
Achieving Distributed Consensus with Raft

Heidi Howard, Pembroke College

Originator: Anil Madhavapeddy

14th October 2011

Project Supervisor: Anil Madhavapeddy

Director of Studies: Chris Hadley

Project Overseers: Prof. Jean Bacon & Prof. Ross Anderson

Introduction

Many modern applications rely on the fault tolerance and scalability provided
by distributed systems. Nodes within a distributed system need to agree on
consistent world-views, leading to the problem of achieving consensus. CAP
theorem [1, 3] demonstrates that it is not possible to achieve consistency,
availability and partition tolerance in a distributed system. Furthermore,
a completely asynchronous consensus protocol cannot guarantee consensus
with just a single fail-stop node [2], making comprising liveness or accuracy
necessary in addition to comprising partition tolerance and/or availability,
from the CAP theorem.

Paxos [4] is at the centre of distributed consensus research and is widely
used and taught. But it’s famously difficult to understand, reason about and
implement because of its non-intuitive approach and the lack of universal
agreement on the algorithm for multi-Paxos. This project will look at an
alternative to Paxos, which claims to provide the same guarantees whilst
being simpler to reason about and more fully specified.

1



Starting Point

Raft [8] is a newly proposed consensus algorithm (still under submission) for
generating a consistent replicated log. Ongaro and Ousterhout (the algo-
rithm’s authors) have implemented Raft in ∼2000 lines of C++ and already
other implementations exist. My starting points are:

• Raft Specification: Raft has been formally specified [10] in the TLA+
specification language and has been partially proven correct using me-
chanical and informal proofs. Ongaro and Ousterhout have also re-
leased the teaching materials [9] used in their study comparing the
understandability of Raft and Paxos

• Literature on Consensus: To prepare for this project, I’ve examined
some of the key papers, from the extensive literature on Consensus and
Paxos. I’m still on the progress of reading about other consensus algo-
rithm which Raft has been likened to such as Viewstamped Replication
[7]

• Previous Programming Experience: I have previous experience
working in OCaml and making use of the Core & Async libraries

Project Description

I plan to implement the Raft algorithm in OCaml, making use of its static
type system to limit the reachable erroneous states and eliminate other classes
of errors at compile time. I may make use of the following libraries and tools:

• OPAM - OCaml package manager for installation of libraries and com-
piler versions

• Core & Async - Alternative to the OCaml standard library and a
monadic non-preemptive threading library, designed and maintained
by Jane Street

• SPIN - Simulator and Model checker for non-deterministic automata
described in Promela with properties described in Linear Temporal
Logic

2



• Statecall Policy Language [6] - Language for specifying NDFA’s
which compiles to Promela and OCaml

• PROMELA - OCaml library for creating and modifying Promela pro-
grams

All of the above are open source and I have already secured copies of each

Resources Required

For this project I shall use my personal laptop running 32 bit Ubuntu 12.10,
with an Intel Core i3 Quad core processor. As a backup, I will use my
personal desktop running 64 bit Ubuntu 12.10, with an Intel Core i5 Quad
core processor. If both of the above were to fail, I will fall back to the
university’s MCS.

For backup I will use a git repository on Github. I’ll work within a Drop-
box directory to catch any uncommitted work. I will synchronise regularly
across these each of my machines and daily to the MCS.

Work to be done

The project breaks down into the following sub-projects:

1. Build a key-value store with a client, that can perform basic commands
such as add, find or remove a key-value pair

2. Implement the core Raft algorithm either directly in OCaml or via SPL
(excluding membership changes and log compaction)

3. Manually test the core algorithm with the key-value store application

4. Build a simulator to delay packets, stop/start nodes and run the ap-
plication faster than real time

5. Run a series of simulations, varying external conditions (such as packet
delay and MTBF of nodes) and algorithm parameters (such as election
timeout)

6. Model the core algorithm in Promela and verify some basic safety prop-
erties

3



Success Criterion for the Main Result

The project will be a success if I have implemented the Raft consensus pro-
tocol and can reason about its safety properties, specifically I would like to
be able to demonstrate:

1. The system makes progress whilst the majority of nodes are running
and can communicate with each other

2. The system copes with unreliable network communications including
network delays, partitions, and packet loss, duplication, and re-ordering

3. The system is able to be run either as a real world implementation or
simulation

4. The system operates in an asynchronous environment (with faulty
clocks, messages taking arbitrarily long to deliver and nodes operat-
ing at arbitrary speeds)

5. Each of the replicated state machines (such as the key-value store)
receives commands in the same order therefore implementing a strongly
consistent key-value store

Furthermore, I aim to provide the guarantees laid out by Ongaro and
Ousterhout [8]:

1. Election Safety: at most one leader can be elected in a given term

2. Leader Append-Only: a leader never overwrites or deletes entries in its
log; it only appends new entries.

3. Log Matching: if two logs contain an entry with the same index and
term, then the logs are identical in all entries up through the given
index.

4. Leader Completeness: if a log entry is committed in a given term,
then that entry will be present in the logs of the leaders for all higher-
numbered terms.

5. State Machine Safety: if a node has applied a log entry at a given index
to its state machine, no other server will ever apply a different log entry
for the same index.

4



Possible Extensions

If I achieve my main result early I shall try to additionally perform the
following:

1. Implement cluster membership changes, to allow nodes to be removed
and added to the system and verify its safety

2. Implement log compaction

3. Optimise performance, possibility inspired by literature on Paxos

4. Modify the protocol to handle a wider class of faults such as Byzantine
faults [5]

Timetable

I hope to achieve the following at the end of each time period stated:

1. 24th Oct - 6th Nov (Michaelmas weeks 3-4) Successful sub-
mission of Proposal by 25th October. Comparison of the guarantees
claimed to be provided by Raft and those provided by Multi-Paxos.
Decision regarding how to implement the core algorithm either directly
in OCaml or via SPL

2. 7th Nov - 20th Nov (Michaelmas weeks 5-6) Completed imple-
mentation of the surrounding code i.e the key-value store, client side
code, network communication and logging

3. 21th Nov - 4th Dec (Michaelmas weeks 7-8) Completed imple-
mentation of the core algorithm excluding cluster membership changes
and log compaction

4. 5th Dec - 15th Jan (Michaelmas vacation) Completed simulator
ready to run simulations and output data for analysis

5. 16th Jan - 29th Jan (Lent weeks 1-2) Successful submission of
Progress Report by Friday 31st January and give Progress Presentation.
Run simulations and evaluate

5



6. 30th Jan - 12th Feb (Lent weeks 3-4) Completed analysis of my
Raft implementation in SPIN.

7. 13th Feb - 26th Feb (Lent weeks 5-6) Completed any extensions
(as listed in the possible extensions section). If time allows then con-
sider any alterations to the algorithm to extend its functionality or
optimise it and how they could impact safety

8. 27th Feb - 12th Mar (Lent weeks 7-8) Plan layout of dissertation
and write the main chapters of the dissertation

9. 13th March - 23rd Apr (Easter vacation) Completed further eval-
uation, typesetting and completed draft dissertation. Dissertation sub-
mitted to supervisor for feedback

10. 24th April - 6th May (Easter weeks 1-2) Corrected dissertation
in response to feedback and submission by 12 noon on Friday 16th May

6



References

[1] Eric A Brewer. Towards robust distributed systems. In PODC, page 7,
2000.

[2] Michael J Fischer, Nancy A Lynch, and Michael S Paterson. Impossi-
bility of distributed consensus with one faulty process. Journal of the
ACM (JACM), 32(2):374–382, 1985.

[3] Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the feasibility
of consistent, available, partition-tolerant web services. ACM SIGACT
News, 33(2):51–59, 2002.

[4] Leslie Lamport. The part-time parliament. ACM Transactions on Com-
puter Systems (TOCS), 16(2):133–169, 1998.

[5] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine
generals problem. ACM Transactions on Programming Languages and
Systems (TOPLAS), 4(3):382–401, 1982.

[6] Anil Madhavapeddy. Combining static model checking with dynamic
enforcement using the statecall policy language. In Proceedings of the
11th International Conference on Formal Engineering Methods: For-
mal Methods and Software Engineering, pages 446–465. Springer-Verlag,
2009.

[7] Brian M Oki and Barbara H Liskov. Viewstamped replication: A new
primary copy method to support highly-available distributed systems.
In Proceedings of the seventh annual ACM Symposium on Principles of
distributed computing, pages 8–17. ACM, 1988.

[8] Diego Ongaro and John Ousterhout. In search of an understandable
consensus algorithm. Draft of October 7, 2013.

[9] Diego Ongaro and John Ousterhout. Raft: A consensus algorithm
for replicated logs (user study). http://www.youtube.com/watch?v=
YbZ3zDzDnrw.

[10] Diego Ongaro and John Ousterhout. Safety proof and formal specifca-
tion for raft. https://ramcloud.stanford.edu/∼ongaro/raftproof.pdf.

7


