
Foundations of CS
Example Class 1

these slides are online at http://hh360.user.srcf.
net/blog/teaching



Aim of today 
● inform you about the very basics of the 1A tripos exam
● give you my opinion (!!) on how to approach ML 

problems
● highlight the most common mistakes I see in students 

work
● get you into good habits early
● teach you that ML is best language in the world :-)
All of this is my personal opinion, if anyone else contradicts 
me, trust them not me



taken from http://www.cl.cam.ac.
uk/teaching/exams/exam-structure.pdf



Timing
● Each paper is 3 hrs long and has 5 question
● After 30 mins for picking questions and checking, that 

leaves 30 mins per question
● Each question is 20 marks so 1.5 mins per mark



Approach
Focus on the main function, assume auxiliary functions and 
write them later



DO NOTs



To avoid:
Please try to avoid the following:
● binding to variables that you do not use (wildcard is your 

friend here)
● pattern match cases that will never be matched
● if x then true else false or if x=true then ... else ...
● strange auxiliary functions when a standard function will 

do
● using cons (e.g. x::xs) and then only using the list as 

whole (e.g. always referring to x::xs never just x or xs)



To avoid (2):
● recomputing results



To avoid (3):
● unnecessary constraints on the type of a function that 

should be polymorphic



To avoid (4):
● using if-then-else when pattern matching could be used
● nesting functions unnecessarly (if they don’t use locally 

scoped variables then they don’t need to be nested
● trying to hide issues with your code from the examiner 

(or me), acknowledge and state how you might address 
them



DOs



To do:
Please do:
● Read the whole questions to start with
● Reuse functions from previous parts of the question
● Use diagrams, particularly for binary tree question
● Include call traces for sample input
● State the type of the your functions (don’t forget about 

equality type)
● Wrap your function to initialise values such as 

accumulators



To do (2):
● Use big-O notation when talking about efficiency
● Comment on both space and time efficiency
● Justify your answers (using recurrence relations if you 

can)
● Write functions with multiple arguments (now that you 

know how)
● Throw useful exceptions: give them sensible names and 

add values to them



RESOURCES



An excellent source of interesting 
problems and follows the course 
quite closely





TRIPOS QUESTION TIME




