
Foundations of Computer Science –

Supervision 3 Supplementary Sheet

Heidi Howard

October 30, 2014

Welcome to your third supervision of four in Foundations of Computer Science, we will begin
by discussing this weeks problem sheet and answering your questions from the lectures. Later
we will move onto looking at a real past exam question, focusing on datatypes.

Exercise 1:
This weeks warmup exercise are as follows:

(* given a binary search tree , min returns

the minimum element in the tree *)

val min = fn: ’a tree -> ’a

(* given a function and a list , map applies

the function to each element in the list

and returns the resulting list *)

val map = fn: (’a -> ’b) -> ’a list -> ’b list

(* given a predicate and a list , filter applies

the predicate to each element in the list and removes

elements if the predicate returns false *)

val filter = fn: (’a -> bool) -> ’a list -> ’a list

(* given an element and a list , remove_all removes

all occurences of the element from the list *)

val remove_all = fn: ’a -> ’a list -> ’a list

(* given a sequence , head returns the first element *)

val head = fn: ’a seq -> ’a

(* given a sequence , tail returns the

sequence without the first element *)

1



val tail = fn: ’a seq -> ’a

(* given an element and a sequence ,

add the element to the front of the sequence *)

val cons = fn: ’a -> ’a seq -> ’a seq

Exercise 2:
Write an implementation of take and drop for lazy lists.

[adapted from the definitons on pg 38, sl 401 in the lecture notes]

Exercise 3:
We often talk about how the options datatype can be used to replace exceptions in SML.
Views differ on whether options or exceptions should be used for error handling. Implement
the following functions to convert functions which use exception to onces which use options
and vise versa.

val to_option = fn: (’a -> ’b) -> ’a -> ’b option

val to_exception = fn: (’a -> ’b option) -> ’a -> ’b

Page 2


