
Life on the Edge Network

Heidi Howard
University of Cambridge

first.last@cl.cam.ac.uk

ABSTRACT

The end-to-end principle of the internet is a fallacy. Modern
distributed system rely on the cloud rather than deal with
the complexity of the edge network. We propose to explore
how to provide primitives such as consistency, integrity, ac-
cessibility and authentication in the context of edge network
distributed systems.

Motivation

The internet has abandoned the end-to-end principles on
which it was established [2]. With IPv4 addresses depleted
and the transition to IPv6 yet to restore public identities,
devices are left behind NATs and firewalls. Instead of deal-
ing with the complexity of the edge network, users opt to
use centralized cloud services, o↵ering usability and high
availability.

In this post-Snowden era, users are beginning to question
their decision out of fear of censorship and mass-surveillance.
Furthermore, a series of highly publicized data breaches and
DoS attacks have shed light on the weak guarantees provided
by opaque terms of service [8], which are engineered to min-
imize legal responsibility. Classes of applications such as
multiplayer games and video conferencing can benefit from
low latency characteristics of direct peer to peer connections
whilst others such as local file sync and sharing can benefit
from the high bandwidth and scalability. Even in this mod-
ern world, users need the ability to establish inter-device
connectivity without a full internet connection, for example
isolating processing of personal data from the Internet Of
Things or connecting between personal devices on the go.

In response to this demand, developers are building new
applications for the edge network. They are reimplementing
solutions to establishing authenticated identities, consensus
and availability in the face of mobile nodes, network parti-
tions and asymmetric channels. Without a clear stack and
layers of abstraction, systems fail to provide even the most
basic safety guarantees. Protocols are layered on top of each
other without formal agreement on the services provided at
each layer. Even after this engineering e↵ort by develop-
ers, systems still require intricate configuration to deal with
the diversity of devices, middleboxes and network environ-
ments [6] on the edge network, if they are able to work at
all.

Challenges

For this discussion we make the following distinction. Data
requirements are needs specified by the application, for ex-

ample a distributed file system may specify that file meta-
data must be strongly consistent whilst the files themselves
need only be eventually consistent. In contrast, environmen-
tal requirements is the set of network environments that the
application needs to operate in. For example, an application
might specify that the nodes may be mobile and intermit-
tently connected, however there will always be a cloud node
which is highly reliable and publicly addressable but run on
untrusted infrastructure.

Our focus on the edge network means we lose the data cen-
ter assumptions, typical in distributed systems for decades.
The environmental requirements now spans:

• Heterogeneous network topologies—Middleboxes
plague the edge network, network topologies are com-
plex, devices may have asymmetric reachability, there
is a wide range of link characteristics and tra�c can
be treated di↵erently depending on its class.

• Mobile nodes — We can no longer rely on IP ad-
dresses to identify nodes. Nodes may move between
networks and have multiple network interfaces. Inter-
mittent connectivity and network partitions are com-
mon.

• Diverse hardware — Devices can vary in the con-
straints of CPU, power supply or memory. Utilizing
di↵erent networks may come at di↵erent costs.

• New failure models — We no longer assume homo-
geneous trust between nodes. Di↵erent nodes su↵er
with di↵erent failure models and expected failure pat-
terns.

Developers make crude assumptions about their applica-
tions’ requirements. The data requirement space is large, it
includes some regions that have been proved impossible and
others which may prove impossible.

Research Questions

The key research question is how can we provide services
such as consistency, accessibility and authentication in the
context of edge network distributed systems, this encom-
passes other questions such as:

• Which areas of the space of data and environmental
requirements are covered by existing distributed algo-
rithms, which areas are not yet covered and which ar-
eas are provably impossible to cover?



• How can we formally express the assumptions and guar-
antees of distributed algorithms and their trade-o↵s,
data and environmental requirements such that our
engine can resolve them?

• How can we evaluate such systems given the diversity
of possible environmental requirements and combina-
tions of data requirements?

• How can we ensure that the distributed algorithms
provide the stated guarantees under the assumptions?
How can we construct and reason about these algo-
rithms such that they provide stronger guarantees then
conventional systems?

• How can we combine the above to provide a stack of
protocols which fulfils the data requirements, given the
environmental requirements?

Approach

We propose a new common abstraction between applica-
tions and networked devices to form personal clouds. Pro-
grammers (and ultimately users) formally specify the data
and environmental requirements, these requirements span
domains in fault tolerance, replication, consistency, caching,
accessibility, security levels and confidentiality. From a col-
lection of distributed algorithms, each with their own set
of formally specified assumptions and guarantees, an engine
will stack the protocols to provide the data requirements in
the environmental requirements. From this foundation, we
can build new distributed systems including new systems
for personal data [4]. We are currently considering build-
ing upon a suite of existing tools in this domain including a
unikernel operating system [10], TLS implementation [11],
a git-style distributed data store [3] and Raft consensus im-
plementation [5].

State of the Art

Sapphire [13] is a programming platform to separate applica-
tion and deployment logic in cloud and mobile applications.
Whilst Sapphire’s motivation is similar to ours, it covers a
limited space of data requirements and environmental re-
quirementss and doesn’t provide any guarantees to applica-
tions running on the platform.

The systems community is beginning to design distributed
protocols specifically to tolerate the edge network, such as
achieving consistency in an environment of heterogeneous
trust [12, 7]. But quantifying the environmental require-
ments of such protocols requires a much richer abstraction
than those currently used. For example, it’s no longer suf-
ficient to state that a protocol tolerates n�1

2 fail-stop faults
for a cluster of n nodes. Some authors [1, 9] suggest we
can provide stronger guarantees for distributed protocols by
changing the basic programming constructs and languages
used, this is something we intend to explore further.

1. REFERENCES

[1] Peter Alvaro, Tyson Condie, Neil Conway, Joseph M.
Hellerstein, and Russell Sears. I do declare: Consensus
in a logic language. SIGOPS Oper. Syst. Rev., 43(4),
January 2010.

[2] Marjory S. Blumenthal and David D. Clark.
Rethinking the design of the Internet: the end-to-end
arguments vs. the brave new world. ACM
Transactions on Internet Technology, August 2001.

[3] Thomas Gazagnaire. Irminsule; a branch-consistent
distributed library database. OCaml 2014 Workshop,
2014.

[4] Hamed Haddadi, Heidi Howard, Amir Chaudhry, Jon
Crowcroft, Anil Madhavapeddy, and Richard Mortier.
Personal data: Thinking inside the box. arXiv preprint
arXiv:1501.04737, 2015.

[5] Heidi Howard, Malte Schwarzkopf, Anil
Madhavapeddy, and Jon Crowcroft. Raft refloated: Do
we have consensus? SIGOPS Oper. Syst. Rev., 49(1),
January 2015.

[6] Christian Kreibich, Nicholas Weaver, Boris Nechaev,
and Vern Paxson. Netalyzr: illuminating the edge
network. In Proceedings of the 10th annual conference
on Internet measurement, IMC ’10, pages 246–259.
ACM, 2010.

[7] Jed Liu, Michael D. George, K. Vikram, Xin Qi, Lucas
Waye, and Andrew C. Myers. Fabric: A platform for
secure distributed computation and storage. In
Proceedings of the ACM SIGOPS 22Nd Symposium on
Operating Systems Principles, SOSP ’09, 2009.

[8] Ewa Luger, Stuart Moran, and Tom Rodden. Consent
for all: Revealing the hidden complexity of terms and
conditions. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, pages
2687–2696. ACM, 2013.

[9] Anil Madhavapeddy. Combining static model checking
with dynamic enforcement using the statecall policy
language. In Proceedings of the 11th International
Conference on Formal Engineering Methods: Formal
Methods and Software Engineering, pages 446–465.
Springer-Verlag, 2009.

[10] Anil Madhavapeddy, Richard Mortier, Charalampos
Rotsos, David Scott, Balraj Singh, Thomas
Gazagnaire, Steven Smith, Steven Hand, and Jon
Crowcroft. Unikernels: Library operating systems for
the cloud. In Proceedings of the Eighteenth
International Conference on Architectural Support for
Programming Languages and Operating Systems,
ASPLOS ’13, 2013.

[11] Hannes Mehnert and David Kaloper Mersinjak.
Transport layer security purely in ocaml. In OCaml
Workshop, 2012.

[12] Isaac C She↵, Robbert van Renesse, and Andrew C
Myers. Distributed protocols and heterogeneous trust:
Technical report. arXiv preprint arXiv:1412.3136,
2014.

[13] Irene Zhang, Adriana Szekeres, Dana Van Aken, Isaac
Ackerman, Steven D Gribble, Arvind Krishnamurthy,
and Henry M Levy. Customizable and extensible
deployment for mobile/cloud applications. In
Proceedings of the 11th USENIX conference on
Operating Systems Design and Implementation, pages
97–112. USENIX Association, 2014.


