
Reaching reliable
agreement in an unreliable

world
Heidi Howard

heidi.howard@cl.cam.ac.uk
twitter: @heidiann

blog: hh360.user.srcf.net

Cambridge Tech Talks
17th November 2015

slides: hh360.user.srcf.net/slides/cam_tech_talks.pdf
1

mailto:heidi.howard@cl.cam.ac.uk
http://hh360.user.srcf.net/slides/cam_tech_talks.pdf

Distributed Systems in
Practice

• Social networks

• Banking

• Government information systems

• E-commerce

• Web servers

2

Distributed Systems in
Theory

3

Leslie Lamport

“… a collection of distinct
processes which are spatially

operated and which communicate
with one another by exchanging
messages … the message delay
is not negligible compared to the
time between events in a single

process”
[CACM ‘78]

http://research.microsoft.com/en-us/um/people/lamport/pubs/time-clocks.pdf

Introducing Alice

Alice is new graduate of to the
world of work.

She joins a cool new start up,
where she is responsible for a
distributed system.

4

Key Value Store

5

A 7
B 2
C 1

Key Value Store

6

A 7
B 2
C 1

A?

7

Key Value Store

7

A 7
B 2
C 1

A?

7

B=5

Key Value Store

8

A 7
B 5
C 1

A?

7

B=5

OK

Key Value Store

9

A 7
B 5
C 1

A?

7

B=5

OK
B?

5

Requirements
• Scalability - High throughout processing of

operations.

• Latency - Low latency commit of operation as
perceived by the client.

• Fault-tolerance - Availability in the face of machine
and network failures.

• Linearizable semantics - Operate as if a single
server system.

10

Single Server System

Server

Client 2

A 7
B 2

Client 1 Client 3

11

Single Server System

Server

Client 2

A 7
B 2

Client 1 Client 3

A?

7

12

Single Server System

Server

Client 2

A 7
B 2

Client 1 Client 3

B=3 OK

3

13

Single Server System

Server

Client 2

A 7
B 2

Client 1 Client 3

B?
3

3

14

Single Server System
Pros

• easy to deploy

• low latency (1 RTT in
common case)

• requests executed in-order

Cons

• system unavailable if server
or network fails

• throughput limited to one
server

15

Single Server System (v.2)
Pros

• easy to deploy

• low latency (1 RTT in
common case)

• linearizable semantics

• durability with write-ahead
logging

• partition tolerance with
retransmission & command
cache

Cons

• system unavailable if server
fails

• throughput limited to one
server

16

Backups

aka Primary backup replication

Primary

Client 2

Client 1Backup 1

Backup 1

Backup 1

A 7
B 2

A?
7

A 7
B 2

A 7
B 2

A 7
B 2

17

Backups

aka Primary backup replication

Primary

Client 2

Client 1Backup 1

Backup 1

Backup 1

A 7
B 2

B=1

A 7
B 2

A 7
B 2

A 7
B 2

18

Backups

aka Primary backup replication

Primary

Client 2

Client 1Backup 1

Backup 1

Backup 1

A 7
B 1

B=1

A 7
B 2

A 7
B 2

A 7
B 2

A 7
B 1

19

Backups

aka Primary backup replication

Primary

Client 2

Client 1Backup 1

Backup 1

Backup 1

A 7
B 1

OK

A 7
B 1

A 7
B 1

A 7
B 1

OK

OK

OK

20

Big Gotcha
We are assuming total ordered broadcast

21

Totally Ordered Broadcast

(aka atomic broadcast) the guarantee that messages
are received reliably and in the same order by all
nodes.

22

Intro (Review)
So far we have:

• Defined our notion of a distributed system

• Introduced an example distributed system (Alice
and her key-value store)

• Seen that straw man approaches to building this
system are not sufficient

23

Any questions so far?

Doing the Impossible

24

CAP Theorem
Pick 2 of 3:

• Consistency

• Availability

• Partition tolerance

Proposed by Brewer in 1998, still debated and
regarded as misleading. [Brewer’12]
[Kleppmann’15]

25

Eric Brewer

http://www.infoq.com/articles/cap-twelve-years-later-how-the-rules-have-changed
http://arxiv.org/abs/1509.05393

FLP Impossibility

It is impossible to guarantee consensus when
messages may be delay if even one node may fail.
[JACM’85]

26

https://groups.csail.mit.edu/tds/papers/Lynch/jacm85.pdf

Consensus is impossible[PODC’89]

Nancy Lynch
27

http://groups.csail.mit.edu/tds/papers/Lynch/podc89.pdf

Aside from Simon PJ

Don’t drag your reader or listener
through your blood strained
path.

Simon Peyton Jones
28

Paxos

Paxos is at the foundation of (almost) all distributed
consensus protocols.

It is a general approach of using two phases and
majority quorums.

It takes much more to construct a complete fault-
tolerance distributed systems.

29

Consensus is hard

30

Doing the Impossible
(Review)

In this section, we have:

• Learned about various impossibly results in the
field such as CAP theorem and the FLP results

• Introduced the fundamental (yet famously difficult
to understand) Paxos algorithm

31

Any questions so far?

A raft in the sea of
confusion

32

Case Study 1: Raft

Raft, the understandable replication algorithm.

Provides us with linearisable semantics and in the
best case 2 RTT latency.

A complete(ish) architecture for making our
application fault-tolerance.

33

State Machine Replication

Server

Client

ServerServer A 7
B 2

A 7
B 2

A 7
B 2

B=3

34

State Machine Replication

Server

Client

ServerServer A 7
B 2

A 7
B 2

A 7
B 2

B=3

35

State Machine Replication

Server

Client

ServerServer A 7
B 2

A 7
B 2

A 7
B 2

3

3 3

36

State Machine Replication

Server

Client

ServerServer A 7
B 2

A 7
B 2

A 7
B 2

B=3

3

3 3

37

Leadership

Follower Candidate Leader

Startup/
Restart

Timeout Win

Timeout

Step down

38

Step down

Ordering
Each node stores is own perspective on a value
known as the term.

Each message includes the sender’s term and this is
checked by the recipient.

The term orders periods of leadership to aid in
avoiding conflict.

Each has one vote per term, thus there is at most one
leader per term.

39

ID: 1
Term: 0
Vote: n

ID: 2
Term: 0
Vote: n

ID: 5
Term: 0
Vote: n

ID: 4
Term: 0
Vote: n

ID: 3
Term: 0
Vote: n

40

Leadership

Follower Candidate Leader

Startup/
Restart

Timeout Win

Timeout

Step down

41

Step down

ID: 1
Term: 0
Vote: n

ID: 2
Term: 0
Vote: n

ID: 5
Term: 0
Vote: n

ID: 4
Term: 1

Vote: me

ID: 3
Term: 0
Vote: n

Vote for me in term 1!
42

ID: 1
Term: 1
Vote: 4

ID: 2
Term: 1
Vote: 4

ID: 5
Term: 1
Vote: 4

ID: 4
Term: 1

Vote: me

ID: 3
Term: 1
Vote: 4

Ok!
43

Replication

Each node has a log of client commands and a index
into this representing which commands have been
committed.

A command is consider as committed when the
leader has replicated it into the logs of a majority of
servers.

44

Evaluation

• The leader is a serious bottleneck -> limited
scalability

• Can only handle the failure of a minority of nodes

• Some rare network partitions render protocol in
livelock

45

Raft in the sea of confusion
(Review)

In this section, we have:

• Introduced the Raft algorithm

• Seen how Raft elects a leader between a collect of
nodes

• Evaluated the Raft algorithm

46

Any questions so far?

Beyond Raft

47

Case Study 2: Tango

Tango is designed to be a scalable replication
protocol.

It’s a variant of chain replication.

It is leaderless and pushes more work onto clients

48

Simple Replication

Client 1

A 7
B 2

Client 2

A 4
B 2 Sequencer

Server 1 Server 2 Server 3

0
A=4

Next: 1

0
A=4

0
A=4

B=5

49

Simple Replication

Client 1

A 7
B 2

Client 2

A 4
B 2 Sequencer

Server 1 Server 2 Server 3

0
A=4

Next: 2

0
A=4

0
A=4

Next?

1

50

B=5

Simple Replication

Client 1

A 7
B 2

Client 2

A 4
B 2 Sequencer

Server 1 Server 2 Server 3

0
A=4

Next: 2

0
A=4

0
A=4

B=5 @ 1

OK

1
B=5

51

B=5

Simple Replication

Client 1

A 7
B 2

Client 2

A 4
B 2 Sequencer

Server 1 Server 2 Server 3

0
A=4

Next: 2

0
A=4

0
A=4

1
B=5

1
B=5

52

B=5 @ 1 OK

Simple Replication

Client 1

A 7
B 2

Client 2

A 4
B 2 Sequencer

Server 1 Server 2 Server 3

0
A=4

Next: 2

0
A=4

0
A=4

1
B=5

1
B=5

1
B=5

53

B=5 @ 1

OK

Simple Replication

Client 1

A 7
B 2

Client 2

A 4
B 5 Sequencer

Server 1 Server 2 Server 3

0
A=4

Next: 2

0
A=4

0
A=4

1
B=5

1
B=5

1
B=5

54

Beyond Raft (Review)

In this section, we have:

• Introduced an alternative algorithm, known as
Tango

• Tango is scalable, as the leader is not longer the
bottleneck but has high latency

55

Any questions so far?

Next Steps

56

57

wait… we’re not finished yet!

Requirements
• Scalability - High throughout processing of

operations.

• Latency - Low latency commit of operation as
perceived by the client.

• Fault-tolerance - Availability in the face of machine
and network failures.

• Linearizable semantics - Operate as if a single
server system.

58

Many more examples
• Raft [ATC’14] - Good starting point, understandable

algorithm from SMR + multi-paxos variant

• Tango [SOSP’13] - Scalable algorithm for f+1 nodes, uses
CR + multi-paxos variant

• VRR [MIT-TR’12] - Raft with round-robin leadership & more
distributed load

• Zookeeper [ATC'10] - Primary backup replication + atomic
broadcast protocol (Zab [DSN’11])

• EPaxos [SOSP’13] - leaderless Paxos varient for WANs

59

https://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0CCYQFjABahUKEwidpcOUkLDIAhWPuB4KHWsDCdc&url=https://ramcloud.stanford.edu/raft.pdf&usg=AFQjCNE8XQb0VEwFmg-Xo5yUdZpYq7BEOg&sig2=6ZYyfUhhL8NUVl2CsMF4Sg&bvm=bv.104615367,d.dmo
http://sigops.org/sosp/sosp13/papers/p325-balakrishnan.pdf
http://pmg.csail.mit.edu/papers/vr-revisited.pdf
http://static.cs.brown.edu/courses/cs227/archives/2012/papers/replication/hunt.pdf
http://static.cs.brown.edu/courses/cs227/archives/2012/papers/replication/hunt.pdf
https://www.cs.cmu.edu/~dga/papers/epaxos-sosp2013.pdf

Can we do even better?
• Self-scaling replication - adapting resources to

maintain resilience level.

• Geo replication - strong consistency between wide
area links

• Auto configuration - adapting timeouts and
configure as network changes

• Integrated with unikernels, virtualisation, containers
and other such deployment tech

60

Evaluation is hard

• few common evaluation metrics.

• often only one experiment setup is used.

• different workloads

• evaluation to demonstrate protocol strength

61

Lessons Learned

• Reaching consensus in distributed
systems is do able

• Exploit domain knowledge

• Raft is a good starting point but we
can do much better!

 Any Questions?
62

