Reaching reliable
agreement in an unreliable
worlo

Heidi Howard
heidi.howard@cl.cam.ac.uk
twitter: @heidiann
blog: hh360.user.srcf.net

Cambridge Tech Talks
17th November 2015

slides: hh360.user.srct.net/slides/cam_tech_talks.pdf

1

mailto:heidi.howard@cl.cam.ac.uk
http://hh360.user.srcf.net/slides/cam_tech_talks.pdf

Distributed Systems in
Practice

e Social networks

* Banking

* (Government information systems

e F-commerce

e Web servers

9
ope
WIt

messages ... the message delay
IS not negligible compared to the
time between events in a single

Distributed Systems in
Theory

“ .. acollection of distinct
rocesses which are spatially
rated and which communicate

N one another by exchanging

Drocess” \

N

[CACM ‘78] Leslie Lamport

L= -

http://research.microsoft.com/en-us/um/people/lamport/pubs/time-clocks.pdf

Introducing Alice

(o

N\

\

~_ <

Alice is new graduate of to the
world of work.

She joins a cool new start up,
where she Is responsible for a
distributed system.

Key Value Store

G0
N

Key Value Store

G0
N

Key Value Store

A7 B-5

G0
N

Key Value Store

A7 B-5

G0
O

OK

Key Value Store

A?

B=5

G0
O

OK
B

Requirements

* Scalability - High throughout processing of
operations.

* Latency - Low latency commit of operation as
perceived by the client.

* Fault-tolerance - Availability in the face of machine
and network failures.

- Linearizable semantics - Operate as it a single
server system.

10

Single Server System

Client 1

A

7

B

2

Server

Client 2

Client 3

Single Server System

Client 1

A"

A

7

B

2

Server

Client 2

Client 3

Single Server System

Al7
B23

Server

B=3 || OK

Client 1 Client 2 Client 3

Single Server System

Client 1

A

7

B

2-3

Server

Client 2

=¥

Client 3

Single Server System

Pros Ccons

* ecasy to deploy e system unavailable if server
or network fails
* low latency (1 RTT in
common case) * throughput limited to one
server
* requests executed in-order

15

Single Server System (v.2)

Pros Ccons

easy to deploy e system unavailable if server

fails
low latency (1 RTT in

common case) e throughput limited to one

. . | server
linearizable semantics

durability with write-ahead
logging

partition tolerance with
retransmission & command
cache

16

BaCKUpS

A? Client 1
/

Client 2

-aka Primary backup replication

BaCKUpS

Client 1

—B=1

Client 2

.aka Primary backup replication

BaCKUpS

Client 1

Al7
Bl
.4 ‘B\‘I
Client 2

aka Primary backup replication

BaCKUpS

OK Client 1

OK_:
. OK\‘
OK Client 2

,aka Primary backup replication

Big Gotcha

We are assuming total ordered broadcast

(o

N

/\

Totally Ordered Broadcast

(aka atomic broadcast) the guarantee that messages
are received reliably and in the same order by all
nodes.

22

Intro (Review)

So far we have:
* Defined our notion of a distributed system

* |Introduced an example distributed system (Alice
and her key-value store)

e Seen that straw man approaches to building this
system are not sufficient

Any guestions so far?

23

Doing the Impossible

CAP Theorem

Pick 2 of 3:
* Consistency

* Avallability

Eric Brewer

e Partition tolerance

Proposed by Brewer in 1998, still debated and
regarded as misleading. [Brewer'12]
Kleppmann'15]

25

http://www.infoq.com/articles/cap-twelve-years-later-how-the-rules-have-changed
http://arxiv.org/abs/1509.05393

FLP Impossipbility

t Is Impossible to guarantee consensus when
messages may be delay if even one node may fail.
JACM'85]

20

https://groups.csail.mit.edu/tds/papers/Lynch/jacm85.pdf

[PODC'89]

Consensus is impossible

A Hundred Impossibility Proofs for Distributed Computing

Nancy A. Lynch *
Lab for Computer Science
MIT, Cambridge, MA 02139
lynch@tds.lcs.mit.edu

1 Introduction

This talk is about impossibility results in the area of
distributed computing. In this category, I include not
just results that say that a particular task cannot be
accomplished, but also lower bound results, which say
that a task cannot be accomplished within a certain
bound on cost.

I started out with a simple plan for preparing this
talk: I would spend a couple of weeks reading all the
impossibility proofs in our field, and would catego-
rize them according to the ideas used. Then I would
make wise and general observations, and try to pre-
dict where the future of this area is headed. That
turned out to be a bit too ambitious; there are many
more such results than I thought. Although it is of-
ten hard to say what constitutes a “different result”, I
managed to count over 100 such impossibility proofs!
And my search wasn’t even very systematic or ex-
haustive.

It’s not quite as hopeless to understand this area as
it might seem from the number of papers. Although
there are 100 different results, there aren’t 100 dif-
ferent ideas. I thought I could contribute something
by identifying some of the commonality among the
different results.

So what I will do in this talk will be an incomplete
version of what I originally intended. I will give you

*This work was supported in part by the National Science
Foundation (NSF) under Grant CCR-86-11442, by the Office of
Naval Rescarch (ONR) under Contract N00014-85-K-0168 and
by the Defense Advanced Research Projects Agency (DARPA)
under Contract N00014-83-K-0125.

* Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct com-
mercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and / or specific permission.

© 1989 ACM 0-89791-326-4/89/0008/0001 $1.50

a tour of the impossibility results that I was able to
collect. I apologize for not being comprehensive, and
in particular for placing perhaps undue emphasis on
results I have been involved in (but those are the ones
I know best!). I will describe the techniques used, as
well as giving some historical perspective. I'll inter-
sperse this with my opinions and observations, and
I’ll try to collect what I consider to be the most im-
portant of these at the end. Then I'll make some
suggestions for future work.

2 The Results

I classified the impossibility results I found into the
following categories: shared memory resource allo-
cation, distributed consensus, shared registers, com-
puting in rings and other networks, communication
protocols, and miscellaneous.

2.1 Shared Memory Resource Alloca-
tion

This was the area that introduced me not only to
the possibility of doing impossibility proofs for dis-
tributed computing, but to the entire distributed
computing research area.

In 1976, when I was at the University of Southern
California, Armin Cremers and Tom Hibbard were
playing with the problem of mutual ezclusion (or al-
location of one resource) in a shared-memory envi-
ronment. In the environment they were considering,
a group of asynchronous processes communicate via
shared memory, using operations such as read and
write or test-and-set.

The previous work in this area had consisted of
a series of papers by Dijkstra [38] and others, each
presenting a new algorithm guaranteeing mutual ex-
clusion, along with some other properties such as
progress and fairness. The properties were specified
somewhat loosely; there was no formal model used for

27

(A 7487
Nancy Lynch

http://groups.csail.mit.edu/tds/papers/Lynch/podc89.pdf

Aside from Simon PJ

Don’t drag your reader or listener
through your blood strained
path.

Simon Peyton Jones

28

Paxos

Paxos is at the foundation of (almost) all distributed
CONSeNnsus protocols.

It Is a general approach of using two phases and
majority guorums.

It takes much more to construct a complete tfault-
tolerance distributed systems.

29

<Consensus

/\

Doing the Impossible
(Review)

In this section, we have:

* | earned about various impossibly results in the
field such as CAP theorem and the FLP results

* Introduced the fundamental (yet famously difficult
to understand) Paxos algorithm

Any guestions so far?

31

A raft in the sea of
confusion

Case Study 1: Ratft

Raft, the understandable replication algorithm.

Provides us with linearisable semantics and in the
best case 2 RTT latency.

A complete(ish) architecture for making our
application fault-tolerance.

33

State Machine Replication

B=3

Client

State Machine Replication

B=3

Client

35

State Machine Replication

Client

36

State Machine Replication

B=3

Client

| eadership

Startup/ Step down
Restart
\ M\/n \
Timeout Win
Follower » Candidate » |Leader

\J

Timeout

38

Ordering

Each node stores is own perspective on a value
known as the term.

Each message includes the sender’s term and this is
checked by the recipient.

The term orders periods of leadership to aid in
avoiding conflict.

Each has one vote per term, thus there Iis at most one
leader per term.

39

ID: 1

Term: O
Vote: n
ID: 5 ID: 2
Term: O Term: O
Vote: n Vote: n
ID: 4 ID: 3
Term: O Term: O

Vote: n Vote: n

40

| eadership

Startup/ Step down
Restart
\ M\/n \
Timeout Win
Follower » Candidate » |Leader

\J

Timeout

41

ID: 1

Term: O
Vote: n
ID: 5 ID: 2
Term: O Term: O
Vote: n Vote: n
ID: 4 ID: 3
Term: 1 Term: O
Vote: me Vote: n

Vote for me in term 1!

42

ID: 5
Term: 1
Vote: 4

ID: 4
Term: 1
Vote: me

OKk!

ID: 1
Term: 1
Vote: 4

43

D: 2
Term: 1
Vote: 4

ID: 3
Term: 1
Vote: 4

Replication

Each node has a log of client commands and a index
Into this representing which commands have been
committed.

A command is consider as committed when the
leader has replicated it into the logs of a majority of
Servers.

44

Evaluation

e [The leader Is a serious bottleneck -> limited
scalabillity

 Can only handle the failure of a minority of nodes

e Some rare network partitions render protocol in
livelock

45

Raft In the sea of confusion
(Review)

In this section, we have:
* |Introduced the Raft algorithm

e Seen how Raft elects a leader between a collect of
nodes

* Evaluated the Raft algorithm

Any guestions so far?

46

Beyond Ratft

Case Study 2: Tango

Tango Is designed to be a scalable replication
protocol.

It's a variant of chain replication.

't Is leaderless and pushes more work onto clients

48

Server 1

Simple Replication

0

A=4

A

/

B

2

Client 1

Server 2

B

5

A

4

B

2

Client 2

49

0
A=4

Server 3

Sequencer
Next: 1

Server 1

Simple Replication

0

A=4

A

/

B

2

Client 1

Server 2

B

5

A

4

B

2

Client 2

50

0
A=4

Server 3

1 Sequencer
> Next: 2

Next?

Simple Replication

B=5

Server 1

A

/

B

2

Client 1

0
A=4
Server 2
OK
B=5@ 1 5=9
Al 4
B |2
Client 2

51

0
A=4

Server 3

Sequencer
Next: 2

Simple Replication

B=5

Server 1

A

/

B

2

Client 1

0

1

A=4

B=5

Server 2

B=5@ 1

OK

v

A

4

B

2

Client 2

52

0
A=4

Server 3

Sequencer
Next: 2

Simple Replication

B=5

0

1

Server 1

A

/

B

2

Client 1

A=4

B=5

Server 2

A

4

B

2

Client 2

53

B=5@ 1

OK

0 1

A=4 || B

Server 3

Sequencer
Next: 2

Simple Replication

B=5

0

1

Server 1

A

/

B

2

Client 1

A=4

B=5

Server 2

A

4

B

o

Client 2

o4

0 1

A=4 || B

Server 3

Sequencer
Next: 2

Beyond Raft (Review)

In this section, we have:

* |Introduced an alternative algorithm, known as
Tango

* Jango is scalable, as the leader is not longer the
bottleneck but has high latency

Any guestions so far?

95

Next Steps

<Wait... we're not finished yet!

S/

— <

Requirements

* Scalability - High throughout processing of
operations.

* Latency - Low latency commit of operation as
perceived by the client.

* Fault-tolerance - Availability in the face of machine
and network failures.

- Linearizable semantics - Operate as it a single
server system.

58

Many more examples

Raft [ATC'14] - Good starting point, understandable
algorithm from SMR + multi-paxos variant

Tango [SOSP’13] - Scalable algorithm for f+1 nodes, uses
CR + multi-paxos variant

VRR [MIT-TR’12] - Raft with round-robin leadership & more
distributed load

Zookeeper [ATC'10] - Primary backup replication + atomic
broadcast protocol (Zab [DSN’11])

EPaxos [SOSP’13] - leaderless Paxos varient for WANSs

59

https://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0CCYQFjABahUKEwidpcOUkLDIAhWPuB4KHWsDCdc&url=https://ramcloud.stanford.edu/raft.pdf&usg=AFQjCNE8XQb0VEwFmg-Xo5yUdZpYq7BEOg&sig2=6ZYyfUhhL8NUVl2CsMF4Sg&bvm=bv.104615367,d.dmo
http://sigops.org/sosp/sosp13/papers/p325-balakrishnan.pdf
http://pmg.csail.mit.edu/papers/vr-revisited.pdf
http://static.cs.brown.edu/courses/cs227/archives/2012/papers/replication/hunt.pdf
http://static.cs.brown.edu/courses/cs227/archives/2012/papers/replication/hunt.pdf
https://www.cs.cmu.edu/~dga/papers/epaxos-sosp2013.pdf

Can we do even better?

» Self-scaling replication - adapting resources to
malintain resilience level.

* (Geo replication - strong consistency between wide
area links

* Auto configuration - adapting timeouts and
configure as network changes

* |Integrated with unikernels, virtualisation, containers
and other such deployment tech

60

Evaluation Is hard

few common evaluation metrics.
often only one experiment setup Is used.
different workloads

evaluation to demonstrate protocol strength

61

| essons Learneao

@ * Reaching consensus in distributed

\/\/ systems is do able
* Exploit domain knowledge
/\ * Raft is a good starting point but we

can do much better!

Any Questions?

62

