Liberating distributed
consensus

Heidi Howard @ University of Cambridge

heidi.howard@cl.cam.ac.uk
@heidiann360
www.heidihoward.co.uk

mailto:heidi.howard@cl.cam.ac.uk
https://twitter.com/heidiann360
http://www.heidihoward.co.uk

Distributed Dream

* Performance - scalability, low latency, high throughput, low
cost, energy efficiency, versatility, adaptability

 Reliability - fault-tolerance, dependability, high availability,
AP of CAP, self-healing, geo-replicated

 Correctness - consistency, bug-free, easy to understand

A Hundred Impossibility Proofs for Distributed Computing

Nancy A. Lynch *
Lab for Computer Science
MIT, Cambridge, MA 02139
lynch@tds.lcs.mit.edu

1 Introduction

This talk is about impossibility results in the area of
distributed computing. In this category, I include not
Jjust results that say that a particular task cannot be
accomplished, but also lower bound results, which say
that a task cannot be accomplished within a certain
bound on cost.

I started out with a simple plan for preparing this
talk: I would spend a couple of weeks reading all the
impossibility proofs in our field, and would catego-
rize them according to the ideas used. Then I would
make wise and general observations, and try to pre-
dict where the future of this area is headed. That
turned out to be a bit too ambitious; there are many
more such results than I thought. Although it is of-
ten hard to say what constitutes a “different result”, I
managed to count over 100 such impossibility proofs!
And my search wasn’t even very systematic or ex-
haustive.

It’s not quite as hopeless to understand this area as
it might seem from the number of papers. Although
there are 100 different results, there aren’t 100 dif-
ferent ideas. I thought I could contribute something
by identifying some of the commonality among the
different results.

So what I will do in this talk will be an incomplete
version of what I originally intended. I will give you

*This work was supported in part by the National Science
Foundation (NSF) under Grant CCR-86-11442, by the Office of
Naval Research (ONR) under Contract N00014-85-K-0168 and
by the Defense Advanced Research Projects Agency (DARPA)
under Contract N00014-83-K-0125.

Keywords: impossibility, distributed computing

[PODC’89]

a tour of the impossibility results that I was able to
collect. I apologize for not being comprehensive, and
in particular for placing perhaps undue emphasis on
results I have been involved in (but those are the ones
I know best!). I will describe the techniques used, as
well as giving some historical perspective. I’ll inter-
sperse this with my opinions and observations, and
I'll try to collect what I consider to be the most im-
portant of these at the end. Then I'll make some
suggestions for future work.

2 The Results

I classified the impossibility results I found into the
following categories: shared memory resource allo-
cation, distributed consensus, shared registers, com-
puting in rings and other networks, communication
protocols, and miscellaneous.

2.1 Shared Memory Resource Alloca-
tion

This was the area that introduced me not only to
the possibility of doing impossibility proofs for dis-
tributed computing, but to the entire distributed
computing research area.

In 1976, when I was at the University of Southern
California, Armin Cremers and Tom Hibbard were
playing with the problem of mutual ezxclusion (or al-
location of one resource) in a shared-memory envi-
ronment. In the environment they were considering,
a group of asynchronous processes communicate via
shared memory, using operations such as read and
write or test-and-set.

The previous work in this area had consisted of
a series of papers by Dijkstra [38] and others, each
presenting a new algorithm guaranteeing mutual ex-
clusion, along with some other properties such as
progress and fairness. The properties were specified
somewhat loosely; there was no formal model used for

Page 1

Impossibility of Distributed Consensus with One Faulty
Process

MICHAEL J. FISCHER

Yale University, New Haven, Connecticut

NANCY A. LYNCH

Massachusetts Institute of Technology, Cambridge, Massachusetts
AND

MICHAEL S. PATERSON
University of Warwick, Coventry, England

Abstract. The consensus problem involves an asynchronous system of processes, some of whi.cif may bhe
unreliable. The problem is for the reliable processes to agree on a binary value. In thi:e. paper, it is shown
that every protocol for this problem has the possibility of nontermination, even with o:}ly'onc faulty
process, By way of contrast, solutions are known for the synchronous case, the “Byzantine Generals”
problem.

Categories and Subject Descriptors: C.2.2 [Computer-Communication Networks]: Network Protocols-
protocol architecture, C.2.4 [Computer-Communication Networks]: Distributed Symems—dmrlt-nagd
applications; distributed databases; network operating systems, C.4 [Performance of Systems): Rchgb:l-
ity, Availability, and Serviceability; F.1.2 [Computation by Abstract Devices]: Modes of Comgutauon—
purallelisrn, H.2.4 [Database Management]: Systems~distributed systems, transaction processing

General Terms: Algorithms, Reliability, Theory

Additional Key Words and Phrases: Agreement problem, asynchronous system, Byzantine Generals
problem, commit problem, consensus problem, distributed computing, fault tolerance, impossibility
proof, reliability

1. Introduction

The problem of reaching agreement among remote processes is one of th'e most
fundamental problems in distributed computing and is at the core of many

Editing of this paper was performed by guest editor S. L. Graham. The Editor-in-Chief of JACM did
not participate in the proccssing of the paper.

This work was supported in part by the Office of Naval Research under Contract Nm014-82-K-9154,
by the Office of Army Research under Contract DAAG29-79-C-0155, and by the National Science
Foundation under Grants MCS-7924370 and MCS-8116678.

This work was originally presented at the 2nd ACM Symposium on Principles of Database Systems,
March 1983.

Authors’ present addresses: M. J. Fischer, Department of Computer Science, Yale University, P.O. Box
2158, Yale Station, New Haven, CT 06520; N. A. Lynch, Laboratory for Computer Science, Massachu-
setts Institute of Technology, 545 Technology Square, Cambridge, MA 02139; M. S. Paterson, Depart-
ment of Computer Science, University of Warwick, Coventry CV4 7AL, England

Permission to copy without fee all or part of this material is granted provided that the copies are not

made or distributed for direct commercial advantage, the ACM copyright notice and the ti§lc‘of the
publication and its datc appcar, and noticc i3 given that copying is by permission of the Association for

Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.
© 1985 ACM 0004-5411/85/0400-0374 $00.75

Journal of the Association for Computing Machinery, Vol. 32, No. 2, Apeail 1985, pp. 374-382,

[JACM’85]

https://groups.csail.mit.edu/tds/papers/Lynch/jacm85.pdf
https://dl.acm.org/citation.cfm?id=72982

N
/" Fork =, Timed serial Regular
v d & Al-atomicity
‘ ‘w‘ ’
s 5 Sequential Prefix
' s < _
; \ lincarizable
‘
’ ’ ' " evesa, -
' Weak |) Le* .~
! fork-lin.} See. -
' - ' . J’
] \ - Per-object
:. b 4 models !
' . ’ L) ',' ‘\‘
: BOU"(’Cd Rc‘]l."l‘]c ‘\ 0‘ Pr()cc‘\(’r ‘\ R "
’ < - b ’ .
' fork-ioin : amadl > < Prefix s /" Synchronized™,
: i : causa : . . ’ odels
' causal : v Sequential ’ ¥ mode
: '
: A - ". ! ", ! Weak ordering
: ; Causal : : Per-key Per-record & !
: ‘ : sequential tmeline ¢ i
: Fork } models ; \ ' Release
- L ¥
: sequential ¥ ’ : & '
' - ' . e T "
; ; Y\ o Causal g ; : Coherence 1
' Fork* , ' " Lazy release
.u 47) ' 0.
r e [Per-object ," ' X ’
\Fork-join - e TR : £ Scope
' | L TP . v causa S | ’
v causal = fooN
\ PRAM ' ! '\ Y
5 — (FIFO) i \ Entry
5 . ’ b - 'l
N Slow N .. Location
.. Fork-based memory {, ‘

L)
. models .-
\~ ‘l
\...“0

‘0
-

Writes-follow-reads
(WFR)
“reeee.._ Session models

Read-your-writes
(RYW)

Monotonic Writes
(MW)

Monotonic Reads
(MR)

-
'O
-
-r

“Staleness-based ™,
models N
] k-atomicity
¢ Bounded ﬁ 4
) ¢+ staleness
Vi &
' ! Delta
':: k-regular
g $.
;e
-
' '.‘
\ PBS
A\ t-visibility
) PBS
_ k-staleness”
K-safe S

Eventual
lincarizability

A

Strong
eventual

¥ Eventual
serializability

Composite and tunable
models

Hybrid

Tunable

Rationing

RedBlue

Conit

Vector-field

PBS <k.t>-staleness

|

Eventual

f

_p Quiescent

Weak —

[CSUR’16]

https://dl.acm.org/citation.cfm?id=2926965

Deciding a single value

In this talk, we will reach agreement over a single value
The system is comprised of:
e servers which store the value
e clients which propose values and learn the decided value

We assume a non-Byzantine system.

Requirements of consensus

e Safety - All client must learn the same decided value

* Progress - Eventually, all clients must learn the decided value

Safety must hold even in unreliable and asynchronous systems

The Part-Time Parliament

LESLIE LAMPORT
Digital Equipment Corporation

Recent archaeological discoveries on the island of Paxos reveal that the parliament functioned
despite the peripatetic propensity of its part-time legislators. The legislators maintained
consistent copies of the parliamentary record, despite their frequent forays from the chamber
and the forgetfulness of their messengers. The Paxon parliament’s protocol provides a new
way of implementing the state machine approach to the design of distributed systems.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]: Distrib-
uted Systems—network operating systems; D.4.5 [Operating Systems]|: Reliability—fault-
tolerance; J.1 [Computer Applications]: Administrative Data Processing—government

General Terms: Design, Reliability
Additional Key Words and Phrases: State machines, three-phase commit, voting

1. THE PROBLEM

1.1 The Island of Paxos

Early in this millennium, the Aegean island of Paxos was a thriving
mercantile center.’ Wealth led to political sophistication, and the Paxons
replaced their ancient theocracy with a parliamentary form of government.
But trade came before civic duty, and no one in Paxos was willing to devote
his life to Parliament. The Paxon Parliament had to function even though
legislators continually wandered in and out of the parliamentary Chamber.

The problem of governing with a part-time parliament bears a remark-
able correspondence to the problem faced by today’s fault-tolerant distrib-
uted systems, where legislators correspond to processes, and leaving the
Chamber corresponds to failing. The Paxons’ solution may therefore be of
some interest to computer scientists. I present here a short history of the
Paxos Parliament’s protocol, followed by an even shorter discussion of its
relevance for distributed systems.

Author’s address: Systems Research, Digital Equipment Corporation, 130 Lytton Avenue, Palo
Alto, CA 94301.

Permission to make digital/hard copy of part or all of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and its date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
and/or a fee.

© 1998 ACM 0734-2071/98/0500-0133 85.00

'It should not be confused with the Ionian island of Paxoi, whose name is sometimes corrupted
to Paxos.

ACM Transactions on Computer Systems, Vol. 16, No. 2, May 1998, Pages 133-169.

[TOCS’98]

https://dl.acm.org/citation.cfm?id=279229

“The Paxos algorithm, when presented in plain English, is very
simple.”

“The Paxos algorithm ... iIs among the simplest and most obvious of
distributed algorithms”

“... this consensus algorithm follows almost unavoidably from the
properties we want it to satisfy.”

Leslie Lamport, Paxos Made Simple

https://lamport.azurewebsites.net/pubs/paxos-simple.pdf

“There are significant gaps between the description of the Paxos
algorithm and the needs of a real-world system. ”

“Despite the existing literature on [Paxos], building a production
system turned out to be a non-trivial task”

Chandra et al, Paxos Made Live

https://www.cs.utexas.edu/users/lorenzo/corsi/cs380d/papers/paper2-1.pdf

“Paxos Is exceptionally difficult to understand. The full explanation is
notoriously opaque; few people succeed in understanding it, and only with
great effort. ...”

“... we found few people who were comfortable with Paxos, even among
seasoned researchers.”

“We concluded that Paxos does not provide a good foundation either for
system building or for education.”

Diego Ongaro and John Ousterhout, In Search of an Understandable Consensus Algorithm

10

https://web.stanford.edu/~ouster/cgi-bin/papers/raft-atc14

Limitations of Paxos

 Subtlety - Paxos is famously difficult to understand.

* Performance - Paxos is slow. Each decision requires at least two round
trips to a majority of servers.

11

Today’s lalk

Instead of mitigating these issues, we rethink the underlying principles.

> >

12

Part 1
Distributed consensus
using write-once registers

Single server

Multiple servers, multiple registers

SO
° Ala[T

ST
BIA| |

S2
cl ||

State table

Register sets

16

Decision point

A value Is decided when it has been written to the same register on a
subsets of servers, known as a quorum.

Once a client reads the same value from a quorum of registers, it learns that
the value has been decided.

17

Quorum table

RO+ {(S0,511.{S1,52}.{S0,52}

A Is decided

A Is decided

18

Quorum table

RO {{S0,51,52,S3}}

...

Ri+ | {{S0,51},{S2,S3}}

A Is decided

A IS deCIded """""""""""""" é’";i‘l"I"l'l"l'l‘;l'I'I'l".'l"ﬁ"""
| « A A

g pmpmEmEEmEmmmn?®

an

...

19

However we can decide multiple values

DY I IR RS R R R RN B DU

S0 st s2 s3 s0 s1 82

..

‘IIIIIIIEIIIIII.‘E

.
|

Registers Quorums

R ____________________________ 1s0,51,82,83) RO+ {{S0,S1},{S1,52},{S0,S2}}

R1+ {{S0,51},{S2,83}

Registers Quorums

20

Safety

Only one value should ever be decided

Before a client writes a value to register / it must ensure that no other values are
decided in register sets 0 to /.

21

Part 2
Generalising Paxos

Classic Paxos

Paxos is a two phase, majority based algorithm which solves distributed
CcONSensus.

Registers Quorums

RO+ {(S0,511.{S1,52}.{S0,52}

23

Safety

Only one value should ever be decided
Before a client writes a value to register / it must ensure that:
1. No other values are decided In register set |

2. No other values are decided in register sets 0 to /-7

24

Register allocation rule

We allocate registers to clients round robin and require clients to write at most one
value to each of their allocated registers.

This ensures that at most one value will be written to each register set.

Registers Client
Round_robln RO. R3. co
allocation of QGG
registers to R1. R4, . C1
servers N N
R2, RG6, . C3

25

Safety

Only one value should ever be decided

Before a client writes a value to register / it must ensure that:

Register
allocation
rule

1. No other values are decided In register set |

h

2. No other values are decided in register sets 0 to /-7

20

Client write rule

A client can achieve this by reading one register from each quorum over register sets 0
to I-1 and ensuring that:

e None of the registers are unwritten

e |f any registers contain values, the client must write the value from the greatest
reqgister.

27

Safety

Only one value should ever be decided

Before a client writes a value to register / it must ensure that:

1. No other values are decided in register set ‘ Register
allocation
rule
2. No other values are decided in register sets 0 to /-7
‘ Client
write rule

28

Classic Paxos - Phase one

e The client chooses an allocated register /i and sends prepare(i) to all servers.

 Provided register / is unwritten, each server writes nil in any unwritten registers
from O to /-1 and replies with the register number j and value w of the greatest
non-nil register using promise(l,j,w)

29

Classic Paxos - Phase two

e After a majority of servers reply, the client chooses the value v from the greatest
register or its own value if none. Client sends propose(l,v) to all servers.

e Provided i Is unwritten, each server writes nil to any unwritten registers from O to
-1 and value v to the register i. The server replies to the client using accept(i)

e The client terminates when accept(i) is received from the majority of servers.

30

Example - Phase one

...

...

Example - Phase one

...

...

Example - Phase two

...

...

Example - Phase two

...

...

Example - Phase one

Prepare(2)

0

...

...

Example - Phase one

...

...

Example - Phase two

o S0 st s2
- RI | A A A

..

Propose(2,A)

R2
T ° R3

Example - Phase two

o Accept(2) SO S1 S2
/ RO]]]
o "R A A A
"R2 | A A A

Accept(2)

°\° R3

Quorum intersection

Original requirement - Paxos requires that each of its two phases use a quorum of
servers and that any two quorums must intersect.

Revised requirement - A client using register /i must get at least one server from each
quorum of registers 0 to /-7 to participate in phase one.

39

Part 3
All aboard consensus

Current Reality

Classic Paxos Multi Paxos
Minimum round trips? 2 1
Which client can
decide the value? Any L eader only

41

Design

In many distributed systems:
e Each server and client is co-located on the same host

e Faillures are rare

42

All aboard - Quorum table

Registers Quorums
RO, R1, R2 | {(S0,S1,521
R3+ {{S0,51},{S1,S2},{S0,52}}

43

Registers partitioned at 3

All aboard - Algorithm

Fast path [RO, R1, R2]

Execute phase one locally, followed by phase two with all participants. If
unsuccessful, try slow path.

Slow path [R3+]

Classic two phase paxos with majorities.

44

All aboard consensus

Pros Cons
e |[f all servers are up then e Requires co-location
all clients can terminate in
1TRITT e 2 RTTs are needed if a

server is slow/unavailable

e |f two clients collide, one
will succeed and the other
will retry.

45

This is just the beginning

e Flexible Paxos: Quorum intersection revisited [OPODIS’16]

e A generalised solution to distributed consensus [arXiv'19]

e Distributed consensus revised [PhDthesis’19]

46

https://arxiv.org/pdf/1608.06696v1.pdf
https://arxiv.org/abs/1902.06776
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-935.pdf

Closing Remarks

Paxos is a single point on a broad and diverse
spectrum of consensus algorithms.

Any guestions?

Heidi Howard
heidi.howard@cl.cam.ac.uk
@heidiann360
heidihoward.co.uk

47

mailto:heidi.howard@cl.cam.ac.uk
http://heidihoward.co.uk

