
Liberating distributed
consensus

Heidi Howard @ University of Cambridge

heidi.howard@cl.cam.ac.uk

@heidiann360

www.heidihoward.co.uk

mailto:heidi.howard@cl.cam.ac.uk
https://twitter.com/heidiann360
http://www.heidihoward.co.uk

Distributed Dream

• Performance - scalability, low latency, high throughput, low
cost, energy efficiency, versatility, adaptability

• Reliability - fault-tolerance, dependability, high availability,
AP of CAP, self-healing, geo-replicated

• Correctness - consistency, bug-free, easy to understand

!2

!3

[JACM’85]
[PODC’89]

https://groups.csail.mit.edu/tds/papers/Lynch/jacm85.pdf
https://dl.acm.org/citation.cfm?id=72982

!4

[CSUR’16]

https://dl.acm.org/citation.cfm?id=2926965

Deciding a single value

In this talk, we will reach agreement over a single value

The system is comprised of:

• servers which store the value

• clients which propose values and learn the decided value

We assume a non-Byzantine system.

!5

Requirements of consensus

• Safety - All client must learn the same decided value

• Progress - Eventually, all clients must learn the decided value

Safety must hold even in unreliable and asynchronous systems

!6

!7

[TOCS’98]

https://dl.acm.org/citation.cfm?id=279229

!8

“The Paxos algorithm, when presented in plain English, is very
simple.”

“The Paxos algorithm … is among the simplest and most obvious of
distributed algorithms”

“… this consensus algorithm follows almost unavoidably from the
properties we want it to satisfy.”

Leslie Lamport, Paxos Made Simple
Theory community

perspective

https://lamport.azurewebsites.net/pubs/paxos-simple.pdf

!9

“There are significant gaps between the description of the Paxos
algorithm and the needs of a real-world system. ”

“Despite the existing literature on [Paxos], building a production
system turned out to be a non-trivial task”

Chandra et al, Paxos Made Live
Engineering community

perspective

https://www.cs.utexas.edu/users/lorenzo/corsi/cs380d/papers/paper2-1.pdf

!10

“Paxos is exceptionally difficult to understand. The full explanation is
notoriously opaque; few people succeed in understanding it, and only with
great effort. …”

“… we found few people who were comfortable with Paxos, even among
seasoned researchers.”

“We concluded that Paxos does not provide a good foundation either for
system building or for education.”

Diego Ongaro and John Ousterhout, In Search of an Understandable Consensus Algorithm

Research community
perspective

https://web.stanford.edu/~ouster/cgi-bin/papers/raft-atc14

Limitations of Paxos

!11

• Subtlety - Paxos is famously difficult to understand.

• Performance - Paxos is slow. Each decision requires at least two round
trips to a majority of servers.

Today’s Talk
Instead of mitigating these issues, we rethink the underlying principles.

!12

Part 1

We reframe the
problem of

consensus using
immutable state.

Part 2

We generalise the
Paxos algorithm.

Part 3

We introduce the
All aboard
consensus
algorithm.

Part 1
Distributed consensus

using write-once registers

!13

S0

Single server

!14

C0
A

A

C1

B

A

A

Multiple servers, multiple registers

!15

C0

C1

S0

A

C2

…

S1

B …

S2

C …

A

A

State table

!16

S0 S1 S2
R0 A B C

R1 A A C
R2 A A A

R3 - Nil value

Servers

EpochsRegister sets

Servers

Decision point

!17

A value is decided when it has been written to the same register on a
subsets of servers, known as a quorum.

Once a client reads the same value from a quorum of registers, it learns that
the value has been decided.

Quorum table

!18

S0 S1 S2

R0 - A A

R1 - - A

R2 A A A

R3 A -

A is decided

A is decided

Registers Quorums

R0+ {{S0,S1},{S1,S2},{S0,S2}}

Quorum table

!19

S0 S1 S2 S3

R0 B B A

R1 - - A A

R2 A A A

R3 A

A is decided

A is decided

Registers Quorums

R0 {{S0,S1,S2,S3}}

R1+ {{S0,S1},{S2,S3}}

However we can decide multiple values

!20

S0 S1 S2

R0 C A A

R1 B B A

R2 A C C

R3 A -

S0 S1 S2 S3

R0 - A A

R1 C C A A

R2 A A

Registers Quorums

R0+ {{S0,S1},{S1,S2},{S0,S2}}

Registers Quorums

R0 {{S0,S1,S2,S3}}

R1+ {{S0,S1},{S2,S3}}

Safety

!21

Only one value should ever be decided

Before a client writes a value to register i it must ensure that no other values are
decided in register sets 0 to i.

Part 2
Generalising Paxos

!22

Classic Paxos

Paxos is a two phase, majority based algorithm which solves distributed
consensus.

!23

Registers Quorums

R0+ {{S0,S1},{S1,S2},{S0,S2}}

Safety

!24

Only one value should ever be decided

Before a client writes a value to register i it must ensure that:

1. No other values are decided in register set i

2. No other values are decided in register sets 0 to i-1

Register allocation rule
We allocate registers to clients round robin and require clients to write at most one
value to each of their allocated registers.

This ensures that at most one value will be written to each register set.

!25

Round robin
allocation of
registers to

servers

Registers Client

R0, R3, … C0

R1, R4, … C1

R2, R6, … C3

Safety

Only one value should ever be decided

Before a client writes a value to register i it must ensure that:

1. No other values are decided in register set i

2. No other values are decided in register sets 0 to i-1

!26

Register
allocation

rule

Client write rule

A client can achieve this by reading one register from each quorum over register sets 0
to i-1 and ensuring that:

• None of the registers are unwritten

• If any registers contain values, the client must write the value from the greatest
register.

!27

Safety

Only one value should ever be decided

Before a client writes a value to register i it must ensure that:

1. No other values are decided in register set i

2. No other values are decided in register sets 0 to i-1

!28

Register
allocation

rule

Client
write rule

Classic Paxos - Phase one

• The client chooses an allocated register i and sends prepare(i) to all servers.

• Provided register i is unwritten, each server writes nil in any unwritten registers
from 0 to i-1 and replies with the register number j and value w of the greatest
non-nil register using promise(i,j,w)

!29

Classic Paxos - Phase two

• After a majority of servers reply, the client chooses the value v from the greatest
register or its own value if none. Client sends propose(i,v) to all servers.

• Provided i is unwritten, each server writes nil to any unwritten registers from 0 to
i-1 and value v to the register i. The server replies to the client using accept(i)

• The client terminates when accept(i) is received from the majority of servers.

!30

Example - Phase one

!31

C1

Prepare(1)
S0

S1

S2

S0 S1 S2

R0

R1

R2

R3

Example - Phase one

!32

C1

Promise(1)
S0

S1

S2

S0 S1 S2

R0 - - -

R1

R2

R3Promise(1)

Example - Phase two

!33

C1

Propose(1,A)
S0

S1

S2

S0 S1 S2

R0 - - -

R1

R2

R3

Example - Phase two

!34

C1

Accept(1)
S0

S1

S2

S0 S1 S2

R0 - - -

R1 A A A

R2

R3

Example - Phase one

!35

C1 Prepare(2)
S0

S1

S2

S0 S1 S2

R0 - - -

R1 A A A

R2

R3

C2

Example - Phase one

!36

C1 Promise(2,1,A)
S0

S1

S2

S0 S1 S2

R0 - - -

R1 A A A

R2

R3

C2

Promise(2,1,A)

Example - Phase two

!37

C1

Propose(2,A)

S0

S1

S2

S0 S1 S2

R0 - - -

R1 A A A

R2

R3

C2

Example - Phase two

!38

C1

Accept(2)

S0

S1

S2

S0 S1 S2

R0 - - -

R1 A A A

R2 A A A

R3

C2

Accept(2)

Quorum intersection

Original requirement - Paxos requires that each of its two phases use a quorum of
servers and that any two quorums must intersect.

Revised requirement - A client using register i must get at least one server from each
quorum of registers 0 to i-1 to participate in phase one.

!39

Part 3
All aboard consensus

!40

Current Reality

!41

Classic Paxos Multi Paxos

Minimum round trips? 2 1

Which client can
decide the value? Any Leader only

Can we design an algorithm in which any client can achieve
consensus in just 1 round trip?

Design

In many distributed systems:

• Each server and client is co-located on the same host

• Failures are rare

!42

All aboard - Quorum table

!43

Registers partitioned at 3

Registers Quorums

R0, R1, R2 {{S0,S1,S2}}

R3+ {{S0,S1},{S1,S2},{S0,S2}}

All aboard - Algorithm

Fast path [R0, R1, R2]

Execute phase one locally, followed by phase two with all participants. If
unsuccessful, try slow path.

Slow path [R3+]

Classic two phase paxos with majorities.

!44

All aboard consensus

• If all servers are up then
all clients can terminate in
1 RTT

• If two clients collide, one
will succeed and the other
will retry.

!45

• Requires co-location

• 2 RTTs are needed if a
server is slow/unavailable

Pros Cons

This is just the beginning

• Flexible Paxos: Quorum intersection revisited [OPODIS’16]

• A generalised solution to distributed consensus [arXiv’19]

• Distributed consensus revised [PhDthesis’19]

!46

https://arxiv.org/pdf/1608.06696v1.pdf
https://arxiv.org/abs/1902.06776
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-935.pdf

Closing Remarks

Paxos is a single point on a broad and diverse
spectrum of consensus algorithms.

!47

Any questions?
Heidi Howard

heidi.howard@cl.cam.ac.uk

@heidiann360

heidihoward.co.uk

mailto:heidi.howard@cl.cam.ac.uk
http://heidihoward.co.uk

