Coracle

Evaluating Distributed Consensus for Real World Networks & Thoughts on Fixing it

Heidi Howard
University of Cambridge
heidi.howard@cl.cam.ac.uk

Slides: hh360.user.srcf.net/slides/sigcomm.pdf

TL;DR

We want to achieve distributed consensus beyond the typical datacenter.

Existing algorithms not sufficient to achieve this, due (in part) to limited availability.

We can do better.

Coracle - Unanimous - Hydra

Distributed Consensus

Applications*:

- database transactions
- fault tolerant key-value stores
- distributed lock managers
- terminating reliable broadcast

*not forgetting Greek parliamentary proceedings and generals invading a city

Meet Alice

Consensus + Replication = Fault-tolerant app

```
Gaios [Bolosky NSDI'11] = Paxos + RSM
```

Zookeeper [Hunt ATC'10] = Zab + PBR

Raft [Ongaro ATC'14] = Raft core + RSM

- Leadership election
 - Modes of operation
 - Terms
- State machine replication (SMR)

Returning to Alice

Alice deploys Raft consensus

Raft is proven correct

Thus, Alice can sleep well

Specified Assumptions

- Network communication is unreliable.
- Nodes have persistent storage that cannot be corrupted and any write will be completed before crashing.
- Asynchronous environment with faulty clocks, no bound for message delay and nodes may operate at arbitrary speeds.
- No Byzantine failures.

"They [Raft and other protocols] are fully functional (available) as long as any majority of the servers are operational and can communicate with each other and with clients. Thus, a typical cluster of five servers can tolerate the failure of any two servers."

DEMO TIME

join in at consensus-oracle.github.io/coracle/ and click "Take me to the DEMO"

Meet Bob

Use case: Google cloud permutable VMs

Problems: node failures are common, machine migration

Meet Charlie

Use case: Geo-replicated datacentres

Problems: heterogeneous latency, high latency links, node clustering

Meet Eve

Use case: Internet edge

Problems: many...

New context

- Node failures are commonplace
- Network latency is unstructured and heterogeneous
- Partition are regular, possibly permanent
- Reachability between nodes may be asymmetric and non-transitive

DEMO TIME

join in at consensus-oracle.github.io/coracle/ and click "Take me to the DEMO"

Backup: Example 1

Backup: Example 2

Backup: Example 3

Coracle

Event based simulation of consensus algorithms on interesting networks with:

- pure protocol implementations with Unix & MirageOS support
- test suite of interesting and realistic examples

Next Steps

- Coracle: Supporting more consensus protocols and studying real networks
- Unanimous: New consensus algorithm for real world networks, focused on availability.
- Hydra: Self-scaling, self-healing services using Jitsu [Madhavapeddy NSDI '15] and MirageOS [Madhavapeddy ASPLOS '13]

Fin.

Coracle demo: consensus-oracle.github.io/coracle/

Coracle source*: github.com/consensus-oracle/coracle

Slides**: hh360.user.srcf.net/slides/sigcomm.pdf

*Code is open source under the MIT license.

**Material are released under CC Attribution 4.0

International license.