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——— Abstract

Distributed consensus is integral to modern distributed systems. The widely adopted Paxos
algorithm uses two phases, each requiring majority agreement, to reliably reach consensus. In
this paper, we demonstrate that Paxos, which lies at the foundation of many production systems,
is conservative. Specifically, we observe that each of the phases of Paxos may use non-intersecting
quorums. Majority quorums are not necessary as intersection is required only across phases.
Using this weakening of the requirements made in the original formulation, we propose Flex-
ible Paxos, which generalizes over the Paxos algorithm to provide flexible quorums. We show

that Flexible Paxos is safe, efficient and easy to utilize in existing distributed systems. We discuss

far reaching implications of this result. For example, improved availability results from reducing
the size of second phase quorums by one when the system size is even, while keeping majority
quorums in the first phase. Another example is improved throughput of replication by using
much smaller phase 2 quorums, while increasing the leader election (phase 1) quorums. Finally,

non intersecting quorums in either first or second phases may enhance the efficiency of both.
1998 ACM Subject Classification C.2.4 Distributed Systems
Keywords and phrases Paxos, Distributed Consensus, Quorums

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2016.25

1 Introduction

Distributed consensus is the problem of reaching agreement in the face of failures. It is a
common problem in modern distributed systems and its applications range from distributed
locking and atomic broadcast to strongly consistent key value stores and state machine
replication [36]. Lamport’s Paxos algorithm [19, 20] is one such solution to this problem and
since its publication it has been widely built upon in teaching, research and practice.

At its core, Paxos uses two phases, each requires agreement from a subset of participants
(known as a quornm) to proceed. The safety and liveness of Paxos is based on the guarantee
that any two quorums will intersect. To satisfy this requirement, quornms are typically
composed of any majority from a fixed set of participants, although other quorum schemes
have been proposed.

In practice, we usually wish to reach agreement over a sequence of values, known as
Multi-Paxos [20]. We use the first phase of Paxos to establish one participant as a leader and
the second phase of Paxos to propose a series of values. To commit a value, the leader must
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A Generalised Solution to Distributed Consensus
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Abstract

Distributed consensus, the ability to reach agreement in the face of failures and
asynchrony, is a fundamental primitive for constructing reliable distributed systems
from unreliable components. The Paxos algorithm is synonymous with distributed
consensus, yet it performs poorly in practice and is famously difficult to understand.
In this paper, we re-examine the foundations of distributed consensus. We derive an
abstract solution to consensus, which utilises immutable state for intuitive reasoning
about safety. We prove that our abstract solution generalises over Paxos as well as the
Fast Paxos and Flexible Paxos algorithms. The surprising result of this analysis is a
substantial weakening to the quorum requirements of these widely studied algorithms.

1 Introduction

We depend upon distributed systems, yet the computers and networks that make up these systems
are asynchronous and unreliable. The longstanding problem of distributed consensus formalises
how to reliably reach agreement in such systems. When solved, we become able to construct
strongly consistent distributed systems from unreliable components [13] 21, 4, 17]. Lamport’s
Paxos algorithm [14] is widely deployed in production to solve distributed consensus [5, (6], and
experience with it has led to extensive research to improve its performance and our understanding
but, despite its popularity, both remain problematic.

Paxos performs poorly in practice because its use of majorities means that each decision re-
quires a round trip to many participants, thus placing substantial load on each participant and
the network connecting them. As a result, systems are typically limited in practice to just three
or five participants. Furthermore, Paxos is usually implemented in the form of Multi- Pazos, which
establishes one participant as the master, introducing a performance bottleneck and increasing
latency as all decisions are forwarded via the master. Given these limitations, many production
systems often opt to sacrifice strong consistency guarantees in favour of performance and high
availability [7, (3} 18]. Whilst compromise is inevitable in practical distributed systems [10], Paxos
offers just one point in the space of possible trade-offs. In response, this paper aims to improve
performance by offering a generalised solution allowing engineers the flexibility to choose their own
trade-offs according to the needs of their particular application and deployment environment.

Paxos is also notoriously difficult to understand, leading to much follow up work, explaining the
algorithm in simpler terms [20} 15, 19, 23] and filling the gaps in the original description, necessary
for constructing practical systems [6, 2]. In recent years, immutability has been increasingly widely
utilised in distributed systems to tame complexity [11]. Examples such as append-only log stores [1,
8] and CRDTs [22] have inspired us to apply immutability to the problem of consensus.
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Distributed Dream

Performance - scalability, low latency, high throughput, low cost,
energy efficiency, versatility, adaptability

Reliability - fault-tolerance, dependability, high availability, self-
healing, geo-replicated

Correctness - consistency, bug-free, easy to understand
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1 Introduction

This talk is about impossibility results in the area of
distributed computing. In this category, I include not
Jjust results that say that a particular task cannot be
accomplished, but also lower bound results, which say
that a task cannot be accomplished within a certain
bound on cost.

I started out with a simple plan for preparing this
talk: I would spend a couple of weeks reading all the
impossibility proofs in our field, and would catego-
rize them according to the ideas used. Then I would
make wise and general observations, and try to pre-
dict where the future of this area is headed. That
turned out to be a bit too ambitious; there are many
more such results than I thought. Although it is of-
ten hard to say what constitutes a “different result”, I
managed to count over 100 such impossibility proofs!
And my search wasn’t even very systematic or ex-
haustive.

It’s not quite as hopeless to understand this area as
it might seem from the number of papers. Although
there are 100 different results, there aren’t 100 dif-
ferent ideas. I thought I could contribute something
by identifying some of the commonality among the
different results.

So what I will do in this talk will be an incomplete
version of what I originally intended. I will give you

*This work was supported in part by the National Science
Foundation (NSF) under Grant CCR-86-11442, by the Office of
Naval Research (ONR) under Contract N00014-85-K-0168 and
by the Defense Advanced Research Projects Agency (DARPA)
under Contract NO0014-83-K-0125.

Keywords: impossibility, distributed computing
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a tour of the impossibility results that I was able to
collect. I apologize for not being comprehensive, and
in particular for placing perhaps undue emphasis on
results I have been involved in (but those are the ones
I know best!). I will describe the techniques used, as
well as giving some historical perspective. I’ll inter-
sperse this with my opinions and observations, and
I'll try to collect what I consider to be the most im-
portant of these at the end. Then I'll make some
suggestions for future work.

2 The Results

I classified the impossibility results I found into the
following categories: shared memory resource allo-
cation, distributed consensus, shared registers, com-
puting in rings and other networks, communication
protocols, and miscellaneous.

2.1 Shared Memory Resource Alloca-
tion

This was the area that introduced me not only to
the possibility of doing impossibility proofs for dis-
tributed computing, but to the entire distributed
computing research area.

In 1976, when I was at the University of Southern
California, Armin Cremers and Tom Hibbard were
playing with the problem of mutual ezxclusion (or al-
location of one resource) in a shared-memory envi-
ronment. In the environment they were considering,
a group of asynchronous processes communicate via
shared memory, using operations such as read and
write or test-and-set.

The previous work in this area had consisted of
a series of papers by Dijkstra [38] and others, each
presenting a new algorithm guaranteeing mutual ex-
clusion, along with some other properties such as
progress and fairness. The properties were specified
somewhat loosely; there was no formal model used for
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Abstract. The consensus problem involves an asynchronous system of processes, some of whiclf may be
unreliable. The problem is for the reliable processes to agree on a binary value. In this paper, it is shown
that every protocol for this problem has the possibility of nontermination, even with only one faulty
process. By way of contrast, solutions are known for the synchronous case, the “Byzantine Generals”
problem.

Categories and Subject Descriptors: C.2.2 [Computer-Communication Networks]: Network Protocols-
protocol architecture, C.2.4 [Computer-Communication Networks): Distributed Syaems-dts:rtlpagd
applications; distributed databases; network operating systems;, C.4 [Performance of Systems]: Rehgb:l-
ity, Availability, and Serviceability; F.1.2 [Computation by Abstract Devices]: Modes of Computanon—
purallelisrn, H.2.4 [Database Management): Systems~distributed systems; transaction processing

General Terms: Algorithms, Reliability, Theory

Additional Key Words and Phrases: Agreement problem, asvnchrogous system, Byzantine Gepe_xgls
problem, commit problem, consensus problem, distributed computing, fault tolerance, impossibility
proof, reliability

1. Introduction

The problem of reaching agreement among remote processes is one of the most
fundamental problems in distributed computing and is at the core of many

Editing of this paper was performed by guest editor S. L. Graham. The Editor-in-Chief of JACM did
not participate in the proccssing of the paper.

This work was supported in part by the Office of Naval Research under Contract N00014-82-K-91 54,
by the Office of Army Research under Contract DAAG29-79-C-0155, and by the National Scicnce
Foundation under Grants MCS-7924370 and MCS-8116678.

This work was originally presented at the 2nd ACM Symposium on Principles of Database Systems,
March 1983.

Authors’ present addresses: M. J. Fischer, Department of Computer Science, Yale University, P.O. Box
2158, Yale Station, New Haven, CT 06520; N. A. Lynch, Laboratory for Computer Science, Massachu-
setts Institute of Technology, 545 Technology Square, Cambridge, MA 02139; M. S. Paterson, Depart-
ment of Computer Science, University of Warwick, Coventry CV4 7TAL, England

Permission to copy without fee all or part of this material is granted provided that the copies are not

made or distributed for direct commercial advantage, the ACM copyright notice and the ti;lc.of the
publication and its datc appcar, and notice is given that copying is by pcrmission of the Association for

Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.
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Deciding a single value

In this talk, we will reach agreement over a single value
The system is comprised of:
e servers which store the value

e clients which propose values and learn the decided value



This Is not a
blockchain talk



Requirements of consensus

Safety - All clients must learn the same decided value

Progress - Eventually, all clients must learn the decided value



Requirements of consensus

Safety - All clients must learn the same decided value

Progress - Eventually, all clients must learn the decided value

Safety must hold even in unreliable and

asynchronous systems



The Part-Time Parliament

LESLIE LAMPORT
Digital Equipment Corporation

Recent archaeological discoveries on the island of Paxos reveal that the parliament functioned
despite the peripatetic propensity of its part-time legislators. The legislators maintained
consistent copies of the parliamentary record, despite their frequent forays from the chamber
and the forgetfulness of their messengers. The Paxon parliament’s protocol provides a new
way of implementing the state machine approach to the design of distributed systems.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks|: Distrib-
uted Systems—network operating systems; D.4.5 [Operating Systems]: Reliability—fault-
tolerance; J.1 [Computer Applications]: Administrative Data Processing—government

General Terms: Design, Reliability
Additional Key Words and Phrases: State machines, three-phase commit, voting

1. THE PROBLEM

1.1 The Island of Paxos

Early in this millennium, the Aegean island of Paxos was a thriving
mercantile center.’ Wealth led to political sophistication, and the Paxons
replaced their ancient theocracy with a parliamentary form of government.
But trade came before civic duty, and no one in Paxos was willing to devote
his life to Parliament. The Paxon Parliament had to function even though
legislators continually wandered in and out of the parliamentary Chamber.
The problem of governing with a part-time parliament bears a remark-
able correspondence to the problem faced by today’s fault-tolerant distrib-
uted systems, where legislators correspond to processes, and leaving the
Chamber corresponds to failing. The Paxons’ solution may therefore be of [TOCS’981
some interest to computer scientists. I present here a short history of the
Paxos Parliament’s protocol, followed by an even shorter discussion of its
relevance for distributed systems.
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Theory perspective

“The Paxos algorithm, when presented in plain English, is very
simple.”

“The Paxos algorithm ... is among the simplest and most
obvious of distributed algorithms”

“... this consensus algorithm follows almost unavoidably from
the properties we want it to satisfy.”

Leslie Lamport, Paxos Made Simple

10


https://lamport.azurewebsites.net/pubs/paxos-simple.pdf

Engineering perspective

“Paxos is exceptionally difficult to understand... few people
succeed in understanding it, and only with great effort. ...”

“... we found few people who were comfortable with Paxos, even
among seasoned researchers.”

“We concluded that Paxos does not provide a good foundation
either for system building or for education.”

Diego Ongaro and John Ousterhout,
In Search of an Understandable
Consensus Algorithm

11
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Limitations of Paxos



Limitations of Paxos

Paxos IS

subtle
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Limitations of Paxos

Paxos IS Paxos IS

subtle slow
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Today's Talk



Today's Talk

Part 1

We reframe the

problem of
distributed
consensus.
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Today's Talk

Part 1
Part 2

We reframe the

problem of We generalise the
distributed Paxos algorithm.
consensus.
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Today's Talk

Part 1

Part 2 Part 3

We reframe the .
We introduce the

All aboard
algorithm.

problem of We generalise the
distributed Paxos algorithm.
consensus.
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Part 1
Distributed consensus
using write-once registers

15



Single server
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Single server
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Single server
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Multiple servers
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Multiple servers
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Multiple servers
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Multiple servers
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Multiple servers
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Multiple servers
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Multiple servers
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Multiple servers
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Multiple servers
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Split Votes

Input: A
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Input: C
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Multiple write-once registers
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Example state table



Example state table
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Example state table

Servers

Register sets

23



Making decisions



Making decisions

A value is decided when it has been
written to the same register on a
subset of servers, known as a

quorum.

24



Example quorum table
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Putting it all together



Putting it all together

Quorums

RO+ 150,51} {S1,52} {S0,S2}
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Putting it all together

Quorums
RO+ {SO,S1}{S1,52} {S0,S2}
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Putting it all together

Quorums
RO+ {SO,S1}{S1,52} {S0,S2}
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Putting it all together

Quorums
RO {S0,51,S2,53}

Quorums
RO+ {SO,S1}{S1,52} {S0,S2}

SO S1 S2 SO S1 S2  S3

26



We can decide multiple values
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We can decide multiple values
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We can decide multiple values
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We can decide multiple values

s Quorums
RO+ {SO S1}{S1,52}{S0,S2}
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We can decide multiple values

s Quorums
RO+ {SO S1}{S1,52}{S0,S2}
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Safety

Before a client writes a value to register i
it must ensure that no other values could
be decided in register sets O to i.

28



Part 2
Generalising Paxos



Safety

Before a client writes a value to register i it must ensure that:
1. No other values could be decided in register set i

2. No other values could be decided in register sets 0 to i-1

30



Register allocation rule

Paxos allocates registers to clients round robin and requires
clients to write at most one value to each of their allocated
registers.

Client Registers
cCoO

31



Safety

Before a client writes a value to register i it must ensure that:

Register
allocation
rule

2. No other values could be decided in register sets 0 to i-1

1. No other values could be decided in register set i *

32



Value selection rule

Paxos requires clients to read one register from each quorum of
register sets O to i-1 and ensure that:

1. All of the registers are written, and

2. If any registers contain non-nil values, the client must write the
value from the greatest register.

33



Safety

Before a client writes a value to register i it must ensure that:

Register
allocation

rule
2. No other values could be decided in register sets 0 to i-1

1. No other values could be decided in register set i ‘

Value
selection
rule

h
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Classic Paxos

Paxos is a two phase consensus algorithm.
e Phase one ensures the safety of phase two.

e Phase two writes a value to the servers to achieve consensus.

35



Classic Paxos

Paxos is a two phase consensus algorithm.
e Phase one ensures the safety of phase two.

e Phase two writes a value to the servers to achieve consensus.

Quorums

RO+ {S0,S1}{S1,52}1{S0,S2}
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Classic Paxos - Phase one
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Classic Paxos - Phase one

e The client chooses an allocated register set i and sends PREPARE(i)
to all servers.
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Classic Paxos - Phase one

e The client chooses an allocated register set i and sends PREPARE(i)
to all servers.

e Each server writes nil in any unwritten registers from 0 to i-1 and
replies with the register number j and value w of the greatest
non-nil register using PROMISED(i,j,w) or PROMISED(i) if no such
register exists.

36



Classic Paxos - Phase one

e The client chooses an allocated register set i and sends PREPARE(i)
to all servers.

e Each server writes nil in any unwritten registers from 0 to i-1 and
replies with the register number j and value w of the greatest
non-nil register using PROMISED(i,j,w) or PROMISED(i) if no such
register exists.

e When PROMISED(i,...) has been received from a quorum of servers,

the client chooses the value v from the greatest register or its own
value if none exists.

36



Classic Paxos - Phase two
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Classic Paxos - Phase two

e The client sends PROPOSE(i1,Vv) to all servers.
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Classic Paxos - Phase two

e The client sends PROPOSE(i1,Vv) to all servers.

e Each server checks if register i is unwritten. If so, it writes the
value v to register i and replies with ACCEPTED(i).

37



Classic Paxos - Phase two

e The client sends PROPOSE(i1,Vv) to all servers.

e Each server checks if register i is unwritten. If so, it writes the
value v to register i and replies with ACCEPTED(i).

e The client terminates when ACCEPTED(i) has been received from a
quorum of servers.

37



Example - Phase one

SO S1 S2
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PROMISED(R1)
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Example - Phase two
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Example - Phase two
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Example - Phase two
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SO S1 S2
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Example - Phase one
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Example - Phase two
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Example - Phase two
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Example - Phase two
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Input: B
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Slow/faulty clients
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Example - Phase one
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Example - Phase two
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Example - Phase two
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i @)

Input: B
Output: A
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Example - Phase one
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Example - Phase one

PROMISED(R?2)
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Example - Phase two
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Example - Phase two
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Example - Phase two
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Input: B
Output: B

ACCEPTED(R2)

y *Bonus Slide



Quorum intersection
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Quorum intersection

Original requirement

Paxos requires that a quorum of servers participate in each of its two
phases and that any two quorums must intersect.
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Quorum intersection

Original requirement

Paxos requires that a quorum of servers participate in each of its two
phases and that any two quorums must intersect.

Revised requirement

A client using register i must get at least one server from each quorum
of registers 0 to i-1 to participate in phase one.
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Part 3
All aboard consensus



Current Reality

Classic Paxos Multi Paxos
""""""" Minimum round .
. 2 1
______________________________________________ tripsz
Which client can Ar L eader onl
decide the value? Y Y
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Current Reality

Classic Paxos Multi Paxos
""""""" Minimum round .
. 5 2 1
______________________________________________ tripse
Which client can Ar L eader onl
decide the value? Y Y

Can we design an algorithm in which any client can achieve

consensus Iin just 1 round trip?
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Designing for today



Designing for today

1. Failures are rare.
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Designing for today

1. Failures are rare.

2. Each host is a client and server.
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All aboard - Quorum table

All servers

Quorums
RO, R1, R2. {S0,51,S2}

..........................................................................................................................................................................................................................................

Registers

partitioned
at R2

Majority quorums
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All aboard - Algorithm



All aboard - Algorithm

Fast path [RO - R2]

Client executes phase

one locally, followed by
phase two with all
Servers.
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All aboard - Algorithm

Fast path [RO - R2] Slow path [R3+]

Client executes phase Client executes classic

one locally, followed by Paxos with majority
phase two with all quorums for both
servers. phases.
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All aboard - Summary



All aboard - Summary

Pros

e Any clients can
terminate In just one
round trip (provided all
servers are up).
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All aboard - Summary

Pros Cons
e Any clients can e The fast path has
terminate in just one increased the quorum
round trip (provided all size from majority to all.

servers are up).
e More round trips are
needed if a server is
slow/unavailable.
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Lessons learned
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Lessons learned

Immutability and generality can change our perspective on
distributed consensus.
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Lessons learned

Immutability and generality can change our perspective on
distributed consensus.

Paxos can relax its quorum intersection requirements. Utilising
different quorums tables can produce different tradeoffs.
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Lessons learned

Immutability and generality can change our perspective on
distributed consensus.

Paxos can relax its quorum intersection requirements. Utilising
different quorums tables can produce different tradeoffs.

Paxos with majorities is a single point on a broad and diverse
spectrum of consensus algorithms.
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