
Distributed consensus 
revised

Heidi Howard @ Cambridge University

heidi.howard@cl.cam.ac.uk
@heidiann360

heidihoward.co.uk

mailto:heidi.howard@cl.cam.ac.uk
https://twitter.com/heidiann360
http://www.heidihoward.co.uk


The story so far…

�2

A generalised solution 
to distributed 

consensus, 2019
Distributed consensus 

revised, 2018
Flexible Paxos: 

Quorum intersection 
revisited, 2016

https://arxiv.org/abs/1902.06776
https://arxiv.org/abs/1902.06776
https://arxiv.org/abs/1902.06776
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-935.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-935.pdf
http://drops.dagstuhl.de/opus/volltexte/2017/7094/pdf/LIPIcs-OPODIS-2016-25.pdf
http://drops.dagstuhl.de/opus/volltexte/2017/7094/pdf/LIPIcs-OPODIS-2016-25.pdf
http://drops.dagstuhl.de/opus/volltexte/2017/7094/pdf/LIPIcs-OPODIS-2016-25.pdf


Distributed Dream

Performance - scalability, low latency, high throughput, low cost, 
energy efficiency, versatility, adaptability 

Reliability - fault-tolerance, dependability, high availability, self-
healing, geo-replicated

Correctness - consistency, bug-free, easy to understand

�3



�4
[JACM’85]

[PODC’89]

https://groups.csail.mit.edu/tds/papers/Lynch/jacm85.pdf
https://dl.acm.org/citation.cfm?id=72982


�5

[CSUR’16]

https://dl.acm.org/citation.cfm?id=2926965


Deciding a single value

In this talk, we will reach agreement over a single value

The system is comprised of: 

•servers which store the value

•clients which propose values and learn the decided value

�6



This is not a 
blockchain talk

�7



Requirements of consensus

Safety - All clients must learn the same decided value

Progress - Eventually, all clients must learn the decided value

�8



Requirements of consensus

Safety - All clients must learn the same decided value

Progress - Eventually, all clients must learn the decided value

�8

Safety must hold even in unreliable and 
asynchronous systems



�9

[TOCS’98]

https://dl.acm.org/citation.cfm?id=279229


Theory perspective

�10

“The Paxos algorithm, when presented in plain English, is very 
simple.”

“The Paxos algorithm … is among the simplest and most 
obvious of distributed algorithms”

“… this consensus algorithm follows almost unavoidably from 
the properties we want it to satisfy.” 

Leslie Lamport, Paxos Made Simple

https://lamport.azurewebsites.net/pubs/paxos-simple.pdf


Engineering perspective

�11

 

“Paxos is exceptionally difficult to understand… few people 
succeed in understanding it, and only with great effort. …”

“… we found few people who were comfortable with Paxos, even 
among seasoned researchers.”

“We concluded that Paxos does not provide a good foundation 
either for system building or for education.”

Diego Ongaro and John Ousterhout, 
In Search of an Understandable 
Consensus Algorithm

https://lamport.azurewebsites.net/pubs/paxos-simple.pdf
https://web.stanford.edu/~ouster/cgi-bin/papers/raft-atc14
https://web.stanford.edu/~ouster/cgi-bin/papers/raft-atc14
https://web.stanford.edu/~ouster/cgi-bin/papers/raft-atc14


Limitations of Paxos

�12



Limitations of Paxos

�12

Paxos is 
subtle



Limitations of Paxos

�12

Paxos is 
subtle

Paxos is 
slow



Back to basics

�13



Back to basics

�13

Immutability



Back to basics

�13

Immutability Generality



Today’s Talk

�14



Today’s Talk

�14

Part 1 

We reframe the 
problem of 
distributed 
consensus.



Today’s Talk

�14

Part 1 

We reframe the 
problem of 
distributed 
consensus.

Part 2

We generalise the 
Paxos algorithm.



Today’s Talk

�14

Part 1 

We reframe the 
problem of 
distributed 
consensus.

Part 2

We generalise the 
Paxos algorithm.

Part 3 

We introduce the 
All aboard 
algorithm.



Part 1
Distributed consensus 

using write-once registers

�15



S0

Single server

�16



S0

Single server

�16

C0



S0

Single server

�16

C0Input: A



S0

Single server

�16

C0 PROPOSE(A)Input: A



S0

Single server

�16

C0 PROPOSE(A)

A

Input: A



S0

Single server

�16

C0 PROPOSE(A)

ACCEPTED(A)
A

Input: A



S0

Single server

�16

C0 PROPOSE(A)

ACCEPTED(A)
A

Input: A
Output: A



S0

Single server

�16

C0 PROPOSE(A)

ACCEPTED(A)

C1

A

Input: A
Output: A



S0

Single server

�16

C0 PROPOSE(A)

ACCEPTED(A)

C1

A

Input: A
Output: A

Input: B



S0

Single server

�16

C0 PROPOSE(A)

ACCEPTED(A)

C1

PROPOSE(B)
A

Input: A
Output: A

Input: B



S0

Single server

�16

C0 PROPOSE(A)

ACCEPTED(A)

C1

PROPOSE(B)

ACCEPTED(A)

A

Input: A
Output: A

Input: B



S0

Single server

�16

C0 PROPOSE(A)

ACCEPTED(A)

C1

PROPOSE(B)

ACCEPTED(A)

A

Input: A
Output: A

Input: B
Output: A



Multiple servers

�17

S0

S1

S2



Multiple servers

�17

C0

S0

S1

S2



Multiple servers

�17

C0

S0

S1

S2

Input: A



Multiple servers

�17

C0

S0

S1

S2

PROPOSE(A)

PROPOSE(A)

PROPOSE(A)

Input: A



Multiple servers

�17

C0

S0

S1

S2

PROPOSE(A)
A

A

A

PROPOSE(A)

PROPOSE(A)

Input: A



Multiple servers

�18

C0

S0

S1

S2

ACCEPTED(A)
A

A

A

ACCEPTED(A)
Input: A



Multiple servers

�18

C0

S0

S1

S2

ACCEPTED(A)
A

A

A

ACCEPTED(A)
Input: A

Output: A



Multiple servers

�19

S0

S1

S2

A

A

A



Multiple servers

�19

S0

S1

S2

A

A

A

C1



Multiple servers

�19

S0

S1

S2

A

A

A

C1Input: B



Multiple servers

�19

S0

S1

S2

A

A

A

C1

PROPOSE(B)

PROPOSE(B)

PROPOSE(B)

Input: B



Multiple servers

�20

S0

S1

S2

A

A

A

C1Input: B



Multiple servers

�20

S0

S1

S2

A

A

A

C1

ACCEPTED(A)

ACCEPTED(A)

Input: B



Multiple servers

�20

S0

S1

S2

A

A

A

C1

ACCEPTED(A)

ACCEPTED(A)

Input: B
Output: A



Split Votes

�21

S0

S1

S2

A

B

C

C0

C1

C2

Input: A

Input: B

Input: C



Multiple write-once registers

�22

C0

C1

S0
A

C2

…

S1
B …

S2
C …

A

A

-

S0

A

-



Example state table

�23



Example state table

�23

S0 S1 S2
R0 A B C
R1 A A -
R2 A -



Example state table

�23

S0 S1 S2
R0 A B C
R1 A A -
R2 A -

Server

EpochsRegister sets

Servers

Nil value



Making decisions

�24



Making decisions

�24

A value is decided when it has been 
written to the same register on a 

subset of servers, known as a 
quorum.



Example quorum table

�25

Quorums
R0 {S0,S1}
R1 {S2,S3}

R2+ {S0,S1} {S2,S3}



Putting it all together

�26



Putting it all together

�26

Quorums
R0+ {S0,S1} {S1,S2} {S0,S2}



Putting it all together

�26

S0 S1 S2
R0 - A A
R1 - A

Quorums
R0+ {S0,S1} {S1,S2} {S0,S2}



Putting it all together

�26

S0 S1 S2
R0 - A A
R1 - A

Quorums
R0+ {S0,S1} {S1,S2} {S0,S2}

Quorums
R0 {S0,S1,S2,S3}

R1+ {S0,S1} {S2,S3}



Putting it all together

�26

S0 S1 S2
R0 - A A
R1 - A

Quorums
R0+ {S0,S1} {S1,S2} {S0,S2}

S0 S1 S2 S3
R0 B B A
R1 - - A A
R2 A A

Quorums
R0 {S0,S1,S2,S3}

R1+ {S0,S1} {S2,S3}



We can decide multiple values

�27



We can decide multiple values

�27

Quorums
R0 {S0,S1,S2,S3}

R1+ {S0,S1} {S2,S3}



We can decide multiple values

�27

S0 S1 S2 S3
R0 - A A
R1 C C A A

Quorums
R0 {S0,S1,S2,S3}

R1+ {S0,S1} {S2,S3}



We can decide multiple values

�27

S0 S1 S2 S3
R0 - A A
R1 C C A A

Quorums
R0 {S0,S1,S2,S3}

R1+ {S0,S1} {S2,S3}
Quorums

R0+ {S0,S1} {S1,S2} {S0,S2}



We can decide multiple values

�27

S0 S1 S2 S3
R0 - A A
R1 C C A A

Quorums
R0 {S0,S1,S2,S3}

R1+ {S0,S1} {S2,S3}

S0 S1 S2
R0 C A A
R1 B B A

Quorums
R0+ {S0,S1} {S1,S2} {S0,S2}



Safety

�28

Before a client writes a value to register i 
it must ensure that no other values could 

be decided in register sets 0 to i.



Part 2 
Generalising Paxos

�29



Safety

�30

Before a client writes a value to register i it must ensure that:

1. No other values could be decided in register set i

2. No other values could be decided in register sets 0 to i-1



Register allocation rule
Paxos allocates registers to clients round robin and requires 
clients to write at most one value to each of their allocated 
registers.

�31

Client Registers
C0 R0, R3, …
C1 R1, R4, …
C2 R2, R5, …



Safety

Before a client writes a value to register i it must ensure that:

1. No other values could be decided in register set i

2. No other values could be decided in register sets 0 to i-1

�32

Register 
allocation 
rule



Value selection rule

Paxos requires clients to read one register from each quorum of 
register sets 0 to i-1 and ensure that:

1. All of the registers are written, and

2. If any registers contain non-nil values, the client must write the 
value from the greatest register.

�33



Safety

Before a client writes a value to register i it must ensure that:

1. No other values could be decided in register set i

2. No other values could be decided in register sets 0 to i-1

�34

Register 
allocation 
rule

Value 
selection
rule



Classic Paxos

Paxos is a two phase consensus algorithm.

• Phase one ensures the safety of phase two.

• Phase two writes a value to the servers to achieve consensus.

�35



Classic Paxos

Paxos is a two phase consensus algorithm.

• Phase one ensures the safety of phase two.

• Phase two writes a value to the servers to achieve consensus.

�35

Quorums
R0+ {S0,S1} {S1,S2} {S0,S2}



Classic Paxos - Phase one

�36



Classic Paxos - Phase one

•The client chooses an allocated register set i and sends PREPARE(i) 
to all servers. 

�36



Classic Paxos - Phase one

•The client chooses an allocated register set i and sends PREPARE(i) 
to all servers. 

•Each server writes nil in any unwritten registers from 0 to i-1 and 
replies with the register number j and value w of the greatest 
non-nil register using PROMISED(i,j,w) or PROMISED(i) if no such 
register exists.

�36



Classic Paxos - Phase one

•The client chooses an allocated register set i and sends PREPARE(i) 
to all servers. 

•Each server writes nil in any unwritten registers from 0 to i-1 and 
replies with the register number j and value w of the greatest 
non-nil register using PROMISED(i,j,w) or PROMISED(i) if no such 
register exists.

•When PROMISED(i,…) has been received from a quorum of servers, 
the client chooses the value v from the greatest register or its own 
value if none exists.

�36



Classic Paxos - Phase two

�37



Classic Paxos - Phase two

•The client sends PROPOSE(i,v) to all servers.

�37



Classic Paxos - Phase two

•The client sends PROPOSE(i,v) to all servers.

•Each server checks if register i is unwritten. If so, it writes the 
value v to register i and replies with ACCEPTED(i).

�37



Classic Paxos - Phase two

•The client sends PROPOSE(i,v) to all servers.

•Each server checks if register i is unwritten. If so, it writes the 
value v to register i and replies with ACCEPTED(i).

•The client terminates when ACCEPTED(i) has been received from a 
quorum of servers.

�37



Example - Phase one

�38

S0

S1

S2

S0 S1 S2
R0
R1
R2
R3



Example - Phase one

�38

C1
S0

S1

S2

S0 S1 S2
R0
R1
R2
R3

Input: A



Example - Phase one

�38

C1
PREPARE(R1) S0

S1

S2

S0 S1 S2
R0
R1
R2
R3

Input: A



Example - Phase one

�39

C1
S0

S1

S2

S0 S1 S2
R0 - - -
R1
R2
R3

Input: A



Example - Phase one

�39

C1
PROMISED(R1) S0

S1

S2

S0 S1 S2
R0 - - -
R1
R2
R3PROMISED(R1)

Input: A



Example - Phase two

�40

C1
PROPOSE(R1,A) S0

S1

S2

S0 S1 S2
R0 - - -
R1
R2
R3

Input: A



Example - Phase two

�41

C1
S0

S1

S2

S0 S1 S2
R0 - - -
R1 A A A
R2
R3

Input: A



Example - Phase two

�41

C1
ACCEPTED(R1) S0

S1

S2

S0 S1 S2
R0 - - -
R1 A A A
R2
R3

Input: A

ACCEPTED(R1)



Example - Phase two

�41

C1
ACCEPTED(R1) S0

S1

S2

S0 S1 S2
R0 - - -
R1 A A A
R2
R3

Input: A
Output: A

ACCEPTED(R1)



Example - Phase one

�42

S0

S1

S2

S0 S1 S2
R0 - - -
R1 A A A
R2
R3



Example - Phase one

�42

S0

S1

S2

S0 S1 S2
R0 - - -
R1 A A A
R2
R3

C2Input: B



Example - Phase one

�42

PREPARE(R2)
S0

S1

S2

S0 S1 S2
R0 - - -
R1 A A A
R2
R3

C2Input: B



Example - Phase one

�43

PROMISED(R2,R1,A) S0

S1

S2

S0 S1 S2
R0 - - -
R1 A A A
R2
R3

C2

PROMISED(R2,R1,A)

Input: B



Example - Phase two

�44

PROPOSE(R2,A)
S0

S1

S2

S0 S1 S2
R0 - - -
R1 A A A
R2
R3

C2Input: B



Example - Phase two

�45

S0

S1

S2

S0 S1 S2
R0 - - -
R1 A A A
R2 A A A
R3

C2Input: B



Example - Phase two

�45

ACCEPTED(R2)

S0

S1

S2

S0 S1 S2
R0 - - -
R1 A A A
R2 A A A
R3

C2

ACCEPTED(R2)

Input: B



Example - Phase two

�45

ACCEPTED(R2)

S0

S1

S2

S0 S1 S2
R0 - - -
R1 A A A
R2 A A A
R3

C2

ACCEPTED(R2)

Input: B
Output: A



Slow/faulty clients

�46
*Bonus Slide



Example - Phase one

�47

S0

S1

S2

S0 S1 S2
R0 - - -
R1 A
R2
R3

*Bonus Slide



Example - Phase one

�47

S0

S1

S2

S0 S1 S2
R0 - - -
R1 A
R2
R3

C2Input: B

*Bonus Slide



Example - Phase one

�47

PREPARE(R2)
S0

S1

S2

S0 S1 S2
R0 - - -
R1 A
R2
R3

C2Input: B

*Bonus Slide



Example - Phase one

�48

PROMISED(R2,R1,A) S0

S1

S2

S0 S1 S2
R0 - - -
R1 A - -
R2
R3

C2

PROMISED(R2)

Input: B

*Bonus Slide



Example - Phase two

�49

PROPOSE(R2,A)
S0

S1

S2

S0 S1 S2
R0 - - -
R1 A - -
R2
R3

C2Input: B

*Bonus Slide



Example - Phase two

�50

S0

S1

S2

S0 S1 S2
R0 - - -
R1 A - -
R2 A A A
R3

C2Input: B

*Bonus Slide



Example - Phase two

�50

ACCEPTED(R2)

S0

S1

S2

S0 S1 S2
R0 - - -
R1 A - -
R2 A A A
R3

C2

ACCEPTED(R2)

Input: B

*Bonus Slide



Example - Phase two

�50

ACCEPTED(R2)

S0

S1

S2

S0 S1 S2
R0 - - -
R1 A - -
R2 A A A
R3

C2

ACCEPTED(R2)

Input: B
Output: A

*Bonus Slide



Example - Phase one

�51

S0

S1

S2

S0 S1 S2
R0 - - -
R1 A
R2
R3

*Bonus Slide



Example - Phase one

�51

S0

S1

S2

S0 S1 S2
R0 - - -
R1 A
R2
R3

C2Input: B

*Bonus Slide



Example - Phase one

�51

PREPARE(R2)
S0

S1

S2

S0 S1 S2
R0 - - -
R1 A
R2
R3

C2Input: B

*Bonus Slide



Example - Phase one

�52

PROMISED(R2)

S0

S1

S2

S0 S1 S2
R0 - - -
R1 A - -
R2
R3

C2

PROMISED(R2)

Input: B

*Bonus Slide



Example - Phase two

�53

PROPOSE(R2,B)
S0

S1

S2

S0 S1 S2
R0 - - -
R1 A - -
R2
R3

C2Input: B

*Bonus Slide



Example - Phase two

�54

S0

S1

S2

S0 S1 S2
R0 - - -
R1 A - -
R2 B B B
R3

C2Input: B

*Bonus Slide



Example - Phase two

�54

ACCEPTED(R2)

S0

S1

S2

S0 S1 S2
R0 - - -
R1 A - -
R2 B B B
R3

C2

ACCEPTED(R2)

Input: B

*Bonus Slide



Example - Phase two

�54

ACCEPTED(R2)

S0

S1

S2

S0 S1 S2
R0 - - -
R1 A - -
R2 B B B
R3

C2

ACCEPTED(R2)

Input: B
Output: B

*Bonus Slide



Quorum intersection

�55



Quorum intersection

Original requirement 

Paxos requires that a quorum of servers participate in each of its two 
phases and that any two quorums must intersect.

�55



Quorum intersection

Original requirement 

Paxos requires that a quorum of servers participate in each of its two 
phases and that any two quorums must intersect.

�55

Revised requirement

A client using register i must get at least one server from each quorum 
of registers 0 to i-1 to participate in phase one.



Part 3 
All aboard consensus

�56



Current Reality

�57

Classic Paxos Multi Paxos

Minimum round 
trips? 2 1

Which client can 
decide the value? Any Leader only



Current Reality

�57

Classic Paxos Multi Paxos

Minimum round 
trips? 2 1

Which client can 
decide the value? Any Leader only

Can we design an algorithm in which any client can achieve 
consensus in just 1 round trip?



Designing for today

�58



Designing for today

1. Failures are rare. 

�58



Designing for today

1. Failures are rare. 

2. Each host is a client and server.

�58



All aboard - Quorum table

�59

Registers 
partitioned 

at R2

Quorums
R0, R1, R2 {S0,S1,S2}

R3+ {S0,S1} {S1,S2} {S0,S2}

Majority quorums

All servers



All aboard - Algorithm

�60



Fast path [R0 - R2]

Client executes phase 
one locally, followed by 

phase two with all 
servers.

All aboard - Algorithm

�60



Fast path [R0 - R2]

Client executes phase 
one locally, followed by 

phase two with all 
servers.

All aboard - Algorithm

�60

Slow path [R3+]

Client executes classic 
Paxos with majority 
quorums for both 

phases.



All aboard - Summary

�61



All aboard - Summary

•Any clients can 
terminate in just one 
round trip (provided all 
servers are up).

�61

Pros



All aboard - Summary

•Any clients can 
terminate in just one 
round trip (provided all 
servers are up).

�61

•The fast path has 
increased the quorum 
size from majority to all. 

•More round trips are 
needed if a server is 
slow/unavailable.

Pros Cons



Lessons learned

�62



Lessons learned

Immutability and generality can change our perspective on 
distributed consensus.

�62



Lessons learned

Immutability and generality can change our perspective on 
distributed consensus.

Paxos can relax its quorum intersection requirements. Utilising 
different quorums tables can produce different tradeoffs.

�62



Lessons learned

Immutability and generality can change our perspective on 
distributed consensus.

Paxos can relax its quorum intersection requirements. Utilising 
different quorums tables can produce different tradeoffs.

Paxos with majorities is a single point on a broad and diverse 
spectrum of consensus algorithms.

�62



Q & A

�63

Heidi Howard
heidi.howard@cl.cam.ac.uk

@heidiann360
heidihoward.co.uk

mailto:heidi.howard@cl.cam.ac.uk
https://twitter.com/heidiann360
http://www.heidihoward.co.uk

