Paper Notes: The Network is Reliable [ACMQ July’14]

The Network is Reliable is an excellent article which attempts to formalise the discussion on real world failures for distributed systems. There is currently great debate on whether the assumption that network partitions are rare is too strong or too weak, for modern networks. Much of the data which we could use to answer this question is not published, instead is takes the form of anecdotes shared between sysadmins over a beer. This article lets the reader sit at the table and share the stories.

It is worth noting that network partition is used here in the broadest possible sense. We are looking at end-to-end communications and anything which can hinder these. This goes beyond simple link and switch failures to distributed GC, bugs in the NIC, and slow IO.

Here 5 examples of the anecdotes covered:

  • split brain caused by non-transitive reachability on EC2
  • redundancy doesn’t always prevent link failure
  • asymmetric reachability due to bugs in the NIC
  • GC and blocking for  I/O can cause huge runtime latencies
  • short transient failures become long term problem with existing algorithms

So, what does this mean for Unanimous and my research on reliable consensus for real world networks?

My original inspiration for working on consensus algorithms was the need for reliable consensus at the internet edge. With consensus comes fault tolerance,  from this we can construct new systems for preserving privacy and handling personal data, offering users a viable alternative to 3rd party centralised services.

However, it has become apparent that the issues of reliable consensus is much more general. This article illustrates that even within the constrained setting of a datacenter, distributed systems are failing to tolerance the wide range of possible failures.



Unanimous: System Research Group talklet

I’m looking forward to sharing my thoughts on consensus for the edge network with the SRG today, abstract below

Many projects in the SRG at the moment (HAT, UCN, contacts app, MirageOS for ARM, Jitsu, databox, signposts) are trying to give individuals an viable alternative to 3rd party centralised services and put them back in control of their personal data. However developing applications for the hostile edge network, with its heterogeneous hosts and networks, trust issues and poorly understood middle boxes is tricky. This is made worse by the fact that consensus algorithms are famously difficult to use, underspecified and based on decade old assumption about the internet. In this talklet, I will motivate Unanimous, a new consensus algorithm for the modern internet.

NB: this is a practice talk for EuroSys doctoral workshop next Tuesday, thus this 5 min talk will simply motivate a research direction instead of presenting a complete solution.
EDIT (17/4): these slides are now online

Conservative election in Byzantine Fault Tolerant Raft

Tangaroa, is a Byzantine tolerant Raft implementation in Haskell, developed by Christopher Copeland and Hongxia Zhong for a Distributed Systems class at Stanford. The authors apply many of the approaches in PBFT to Raft, allowing for the Byzantine failure of nodes.  My interest in this work is how can you stop unnecessary leader elections in Raft algorithm using more conservative election approaches, given that election are too common in some environments (see s4.2 in ARC) .

Copeland and Zhong quickly identify this is one of the key barriers to developing a byzantine raft and describe their lazy voters approach. As with the original Raft protocol, a node time out, becomes a candidate, increments its terms and dispatches RequestVotes RPC’s. In addition to the normal restrictions on granting a vote, Tangaroa adds two extra conditions

  • new term must be < current_term + H, where H is a statistically unlikely number of split votes.
  • the current leader must have failed to dispatch AppendEntries within the heartbeat.

I am not convinced that the first condition will not lead the system to become permanently unavailable. For example, a network partition could separate the nodes into two groups thus one group will have a leader in a low term and the other group constantly trying to re-elect a new leader as it cannot get a majority. When network connectivity is restored, the nodes in will observe a sudden unbounded term increase. Thus nodes will not give out their votes and the system is stalled.

The author’s highlight how the second condition could be implemented. Nodes who are in a position to grant a vote except that the second condition isn’t meet, will record the vote locally and then dispatch the votes only when they observe a leader failure for themselves. This means that a node may only replace the leader when a majority of nodes detect a failure (or the client does) instead of when a single node detects a failure. The paper doesn’t go into much detail about this and how this would impact performance, I suspect that this approach is a little too conservative and many in some cases make it significantly more difficult to replace a fault leader. Various implementation details need to be consider here, for example, if a node times out and dispatches its vote, how long until the node steps up to candidate itself? or after how long does it “forget” its local vote, the election timeout maybe.

Writing a Byzantine Fault Tolerant Raft was always going to be hard, Tangaroa is a good first step in the right direction.